Область допустимых значений (ОДЗ): x >= -4. x - 4*V(x + 4) - 1 < 0 ( V - корень квадратный). x - 1 < 4*V(x + 4) Правая часть неравенства <= 0 для всех х из ОДЗ, левая часть < 0 при x < 1, то есть неравенство выполняется при x < 1, с учетом ОДЗ получаем -4 <= х < 1. Пусть x >= 1. Возведем обе части неравенства в квадрат (x - 1)^2 < 16*(x + 4) x^2 - 2*x + 1 < 16*x + 64 x^2 - 18*x - 63 < 0 Равенство верно на интервале между корнями уравнения. Корни х1 = -3, х2 = 21, неравенство выполняется для -3 < х < 21, с учетом x >= 1 получаем 1 <= х < 21. Объединяем условия -4 <= х < 1 и 1 <= х < 21, получаем ответ: -4 <= х < 21.
3)Исследование на четность-нечетность: Функция нечетная.
4)Точек разрыва нет.
5)Нахождения уравнений асимптот: y=kx+b; k= Не существует. b= так как k не удовлетворяет, то и kx тоже. Не существует.
Асимптот нет.
6)Исследование на монотонность функции и экстремумы: x=0 - критическая точка. При x<0, f`(x)>0; ⇒ f(x) возрастает; При x>0 f`(x)>0; ⇒ f(x) возрастает; Так как знак при переходе через критическую точку не меняется, она не является точкой экстремума. Монотонно возрастает.
7)Исследование на выпуклость-вогнутость: x=0 - точка перегиба. При x<0, f(x)<0; ⇒ Выпуклая. При x>0, f(x)>0; ⇒ Вогнутая.
y=kx
-1=k*2
k=-1/2