-13; -15; -17
13; 15; 17
(2x+1) - первое нечетное число;
(2x+3) - второе нечетное число;
(2x+5) - третье нечетное число;
Составим уравнение:
(2x+1)² +(2x+3)² + (2x+5)² = 683
2²x²+2*2x*1²+1+2²x²+2*2x*3+3²+2²x²+2*2x*5+5² = 683
4x²+4x+1+4x²+12x+9+4x²+20x+25 = 683
12x²+36x+36 = 683
12x²+36x+36-683 = 0
12x²+36x-648 = 0
x²+3x-54 = 0 Разделим уравнение на 12
D = b²-4ac = 3²-4*1*(-54) = 9+216 = 225
x₁ = (-b-√D)/2a = (-3-15)/2*1 = -9
x₂ = (-b+√D)/2a = (-3+15)/2*1 = 6
Найдем числа:
при x=-9
(2x+1) = 2*(-9)+1= -17
(2x+3) = 2*(-9)+3= -15
(2x+5) = 2*(-9)+5= -13
при x=6
(2x+1) = 2*6+1=13
(2x+3) = 2*6+3=15
(2x+5) = 2*6+5=17
Проверим решение:
(-13)² + (-15)² + (-17)² = 169+225+289 = 683
13² + 15² +17² = 169+225+289 = 683
ответ: -13; -15; -17
13; 15; 17
ответ Снизу
Объяснение:
Дана функция у = х² – 6х + 5
График, заданный этим уравнением является параболой. Так как а > 0 (коэффициент при х² положительный), ветви параболы направлены вверх.
Координаты вершины параболы (для построения графика):
х₀ = -b/2a = 6/2 = 3
у₀ = 3² – 6*3 + 5 = -4
Координаты вершины параболы ( 3; - 4)
b)График функции пересекает ось ОУ при х=0:
у = 0-0+5 = 5
Координаты точки пересечения (0; 5)
c)Ось симметрии - прямая, перпендикулярная оси Х и параллельна оси У и проходит через вершину параболы.
Формула: Х = -b/2a = 3
d) Найти нули функции (точки пересечения параболы оси ОХ) для построения графика:
х₁,₂ = (6 ± √36 – 20) / 2
х₁,₂ = (6 ± √16) / 2
х₁,₂ = (6 ± 4) / 2
х₁ = 1
х₂ = 5
Координаты точек (1; 0) (5; 0)
e) Найти дополнительные точки, чтобы можно было построить график. Придаём значения х, получаем значения у:
х = 0 у = 5 (0; 5)
х = 2 у = -3 (2; -3)
х = 4 у = -3 (4; -3)
x = 6 y = 5 (6; 5)
Все необходимые точки для построения графика параболы найдены:
Координаты вершины (3; -4)
Точки пересечения с осью Х (1; 0) и (5; 0)
Дополнительные точки: (0; 5) (2; -3) (4; -3) (6; 5)
2)17/18 - 20/45 = 85/90 - 40/90= 45/90=1/2=0,5