Пусть одна диагональ равна 2х, другая - 2у, тогда 2х+2у=24 и х+у-12, откуда у=12-х.
Диагонали ромба пересекаются под прямым углом, таким образом, площадь ромба состоит из 4-х прямоугольны треугольников с катетами х и у, т.е. площадь ромба S=4*0.5xy=2xy.
Подставим сюда у=12-х и получим S=24x-2x^2.
Найдём максимум этой функции. S'= 24-4x.
Стационарная точка: 24-4х=0 х=6
При х=7 S'<0; при х=5 S'>0, следовательно при х=5 имеем максимум S.
у=12-х=12-6=6.
Тогда Smax=2*6*6=72.
Интересно, что получился квадрат с диагоналями, равными 12.
Объяснение:
Задача №2.
Чтобы определить, принадлежит ли точка графику, надо подставить в формулу значения иксов и игриков:
y = -4x + 3
-115 = -4*(-28)+3
-115 не равно 115 - точка A графику не принадлежит.
Подставляем данные точки B:
-53 = -4 * 14 + 3
-53 = -53 - точка B принадлежит графику, так как результаты вычислений совпали.
Задача №3.
Если график линейной функции y = kx+b проходит через начало координат, то он проходит через точку 0 по иксу и 0 по ординате.
Следовательно, график принимает вид y = kx.
ответ: y = -4x
А если график параллелен, то получается просто число, без иксов, без ничего. ответ: y = -4
.
Область определения функции: D(y) x принадлежит [2;+бесконечности)
Б)
.
Вместо знака = (равно) со второй строчки должен стоять знак ≠(не равно), учтите это .
Итак, область определения функции D(y)≠2