Дано:
а₁+а₃+...+а₂₁ = а₂+а₄+...+а₂₀+15.
Найти а₁₁
Решение
1) Всего в арифметической прогрессии 21 член.
Теперь каждый из них выразим через первый член а₁ и знаменатель прогрессии d.
а₂=a₁+d
а₃=a₁+2d
а₄=a₁+3d
а₆=a₁+5d
а₁₁=a₁+10d
a₂₀=a₁+19d
а₂₁=a₁+20d
2) Левая часть данного равенства представлена суммой 11-ти нечетных членов прогрессии. Найдем её.
а₁+а₃+...+а₂₁ = а₁+(a₁+2d)+...+(а₁+20d) =(a₁+a₁+20d)*11/2 = 11*(a₁+10d)
3) Правая часть данного равенства представлена суммой 10-ти четных членов прогрессии и числа 15. Найдем её.
а₂+а₄+...+а₂₀+15 = (a₁+d+a₁+19d)*10/2 + 15 = 10*(a₁+10d)+15
4) Теперь данное равенство имеет вид:
11*(a₁+10d) = 10*(a₁+10d)+15
Проведем преобразования, приведем подобные члены и получим:
11a₁+110d = 10a₁+100d+15
(11a₁ - 10a₁) + (110d - 100d) = 15
a₁+ 10d = 15
a₁₁=15
ответ: а₁₁ = 15
вероятность.
2. 10!
3. 26%
4. 1) 5/8 (от 6 до 9)
2) 1/36 (на грани первого — шесть, второго — пять)
3) 35/36 (хотя бы на одной грани не 6)
5. Нету количества троечников, поэтому задача нерешаема.
Объяснение:
1) После того, как нашли количество выбрать три согласных и количество выбрать одну гласную, умножаем первое на второе.
Чтобы найти вероятность составления слова "тест", сначала найдём количество комбинаций 6-и элементов по три и 5-ти элементов по 1. Далее находим вероятность найти определённую комбинацию 6-ти элементов по три и 5-ти по 1. Умножаем числа, что получили.
3) От "больше восьми" вычисляем "больше десяти" и получаем то, что искали.
4) 1) Рисуем квадрат с 36-ю квадратиками-исходами, внутри которых пишем количество очков на кубиках. Находим количество благоприятных исходов.
2) Правило умножения: P(A,B)=P(A)×P(B)=1/6*1/6=1/36
3) Условие будет не выполняться только тогда, когда на обоих кубиках будет 6. Вероятность этого — 1/36. Значит, вероятность выполнения условия — 1-1/36=35/36.