По Виету х=4; х=-1/2; (х-4)(х+1/2)≤0
-1/24
+ - +
х∈[-1/2;4] Целые 0; 1;2;3;4.
2. х<1/7
2(x-1)(x+1/2)≤0
___-1/21
+ - +
пересечением множеств
(-∞;1/7)∩[-1/2;1]=[-1/2;1/7)
3. неравенство равносильно системе
х²(3-х)(х-4)²≤0
х≠4
034
+ + - -
x∈[-3;4)∪(4;+∞)∪{0}
4. найдем пересечение решений неравенств решением первого служит х∈(-∞;+∞), т.к. дискриминант меньше нуля. он равен 9-16=7, решением второго (х-4)*(х+4)≤0
-44
+ - +
х∈[-4;4] есть х∈[-4;4]
2x – 3 = 0
2х = 3
х = 3 / 2
х = 1,5.
Получена первая точка – (1,5; 0).
Точка пересечения с осью Оу находится методом подстановки вместо значения переменной х значения ноль:
у (0) = 2 * 0 – 3 = –3
Вторая точка – (0; –3).
Получены две точки, через которые проводится прямая.
Второй заключается в методе подстановки вместо переменной х любых двух значений и вычисления для них значений функции. Например, подставим вместо переменной х два значения – число 2 и число 4. Получим:
При х = 2 функция будет иметь значение:
у = 2 * 2 – 3 = 1 – первая точка (2; 1).
При х = 4 функция будет иметь значение:
у = 2 * 4 – 3 = 5 – вторая точка (4; 5).
И в первом, и во втором случае получим одинаковые прямые.
может это правильно?