1.при каком условии неполное квадратное уравнение имеет корни,равные по модулю, но противоположны знаку? 2.напишите общий вид не полного квадратного уравнения,которое имеет единственный корень? надо
1) Для начала подставим границы отрезка, т. е. числа 1 П в функцию: у (0) = 0+sin0 = 0 y(П) = П + sin2П = П+0 = П 2) Теперь найдем производную этой функции: y' = 1+ 2cos2x 3) Найдем точки, в которых производная равна 0 1 + 2cos2x = 0 cos2x = -1/2 2x = + -arccos(-1/2) + 2Пn 2x = + -arccos(1/2) + П +2Пn 2x = + -П/3 +П + 2Пn 2x = + -4П/3 +2Пn х = + -2П/3 +Пn 4) Находим точки, попадающие в отрезок [0,П] (здесь их 2) при n=0 x = 2П/3 и при n=1 х = -2П/3+П = П/3 5)подставляем найденные точки в функцию у (П/3) = П/3 + sin (2П/3) = П/3 + sqrt(3)/2 y(2П/3) = 2П/3 + sin (4П/3) = 2П/3 -sqrt(3)/2 6) из полученных нами значений (0, П, П/3 + sqrt(3)/2 и 2П/3 -sqrt(3)/2) выбираем наименьшее и наибольшее. Очевидно, что У наименьшее = 0 У наибольшее = П
Примечание sqrt - квадратный корень Только если так.
у (0) = 0+sin0 = 0
y(П) = П + sin2П = П+0 = П
2) Теперь найдем производную этой функции:
y' = 1+ 2cos2x
3) Найдем точки, в которых производная равна 0
1 + 2cos2x = 0
cos2x = -1/2
2x = + -arccos(-1/2) + 2Пn
2x = + -arccos(1/2) + П +2Пn
2x = + -П/3 +П + 2Пn
2x = + -4П/3 +2Пn
х = + -2П/3 +Пn
4) Находим точки, попадающие в отрезок [0,П] (здесь их 2)
при n=0 x = 2П/3
и
при n=1 х = -2П/3+П = П/3
5)подставляем найденные точки в функцию
у (П/3) = П/3 + sin (2П/3) = П/3 + sqrt(3)/2
y(2П/3) = 2П/3 + sin (4П/3) = 2П/3 -sqrt(3)/2
6) из полученных нами значений (0, П, П/3 + sqrt(3)/2 и 2П/3 -sqrt(3)/2) выбираем наименьшее и наибольшее.
Очевидно, что У наименьшее = 0
У наибольшее = П
Примечание sqrt - квадратный корень
Только если так.