М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
bazhin789bazowzpsb
bazhin789bazowzpsb
02.03.2022 23:55 •  Алгебра

Дан конус.площадь боковой поверхности равна 24,найти площадь боковой поверхности конуса, у которого радиус основания в 3 раза меньше,а длина образующей в 2 раза боьше ,чем радиус основания и длина обр этого конуса.

👇
Ответ:
mira133
mira133
02.03.2022

S бок.1 = ПR1L1 

 S бок.2 = ПR2l2

Sбок.2 = П3R10,5L1

Sбок.1 делить на Sбок.2 = ПR1L1 умножит на 2/3ПR1L1 получаем 

 Sбок.1/18 = 2/3 

Sбок.1= 12 

 

 

4,5(49 оценок)
Открыть все ответы
Ответ:
stalkerdanil111
stalkerdanil111
02.03.2022
А)3*q^(n-1)=768
   3*(1-q^n)=1023*(1-q)

q^(n-1)=256
(1-q^n)=341*(1-q)  или, что то же самое:  (q^n-1)=341*(q-1)
 Вероятно, все ж , q -целое, тогда  либо q=2  n=9
                                                          либо  4      n=5
                                                         либо 16      n=3
                                                                 256      n=2
Легко видеть, что годится только q=4 n=5
   ответ:   q=4    n=5
б)   243* (3^(-n)+1)=182*(1/3+1)
       243*(1-(-3)^(-n))=182*4/3
729 -3^6*(-3)^(-n)==728
(3^6)*(-3)^(-n)=1
ответ:
n=6
an=243*(-1/(3^5))=-1

 
4,4(82 оценок)
Ответ:
Марк2992
Марк2992
02.03.2022
Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К.
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет: 1*1*1*2!*2!*3! = 24
Тогда вероятность (согласно классическому определению): \frac{24}{10!} = \frac{1}{151200}

Попробуем другой, более простой
Перестановки с повторением.
Всего у нас \frac{(1 + 1 + 1 + 2 + 2 + 3)!}{3!*2!*2!} = \frac{10!}{3!*2!*2!}
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
\frac{1}{\frac{10!}{3!*2!*2!}} = \frac{3!*2!*2!}{10!} = \frac{24}{10!} = \frac{1}{151200}
4,6(93 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ