1. Область допустимых значений x^2-x-1>0
пусть sqrt(x^2-x-1)=t, t>0
10t-3/t=7
10t^2-7t-3=0
D=169
t1=1
t2=-0,3 не удовл. условию(t>0)
sqrt(x^2-x-1)=1 возводим в квадрат
x^2-x-1=1
x^2-x-2=0
D=9
x1=2
x2=-1
Проверяем ОДЗ х=2 4-2-1=1>0
x=-1 1+1-1=1>0
ответ -1;2
2.принцип такой же
ОДЗ x^2-9x+23>0 данное неравенство справедливо при любом значении х(D<0)
значит и проверку по ОДЗ делать не надо
Пусть sqrt(x^2-9x+23)=t, t>0
2t^2-5t-3=0D=49
t1=3
t2=-0,5 не удовлетворяет(t>0)
sqrt(x^2-9x+23)=3
x^2-9x+23=9
x^2-9x+14=0
D=25
x1=7
x2=2
Преобразуем по формуле суммы кубов: (x+y)(x²-xy+y²) = x³+y³
(x₁+x₂)(x₁²-x₁x₂+x₂²) = 32
Рассмотрим уравнение: x²-2x+q = 0
Из теоремы Виета получаем, что
x₁+x₂ = 2x₁x₂ = qПреобразуем нашу формулу суммы кубов, подставив вместо x₁+x₂ и вместо x₁x₂ соответствующие значения (2 и q):
(x₁+x₂)(x₁²-x₁x₂+x₂²) = 32
2 * (x₁²- q + x₂²) = 32
x₁²+ x₂² - q= 16
Чтобы найти значение x₁²+x₂², возведём в квадрат следующее равенство:
(x₁+x₂)² = 2²
x₁²+2x₁x₂+x₂²=4
x₁²+x₂²=4-2x₁x₂
Воспользуемся следующим равенством x₁x₂ = q
x₁²+x₂²=4-2q
Ещё раз преобразуем нашу формулу:
x₁²+ x₂² - q= 16
4 - 2q - q = 16;
-3q =12
q = -4
Умножим на -4/5 и получаем ответ: -4/5q = -16/5