Так как в задании не указан метод решения заданного уравнения, то можно применить итерационный метод.
Перенесём второй корень вправо.
∛(8-x) = ∛(x+1) + 3
Методом проб находим, что корень находится между значениями переменной -1 и -2.
х = -1: ∛(8-(-1)) = ∛(-1+1) +3; ∛9 = 3: 2,08 = 3 правая больше.
х = -2 ∛(8-(-2) = ∛(-2+1) + 3; ∛10 = -1+3; 2,15 = 2 правая меньше.
Далее применим подстановку промежуточных значений "х".
Для этого удобно пользоваться программой Excel,
-2 -1,9 -1,8 -1,7 -1,6 -1,5 -1,4 -1,3 -1,2 -1,1 -1
0,15443469 0,112718554 0,068292728 0,020575237 -0,031250196 -0,088387682 -0,152739406 -0,227623332 -0,319817346 -0,448081638 -0,919916177
-1,7 -1,69 -1,68 -1,67 -1,66 -1,65 -1,64 -1,63 -1,62 -1,61 -1,6
0,020575237 0,015593699 0,010570408 0,005504347 0,000394459 -0,004760357 -0,009961247 -0,015209404 -0,020506072 -0,025852552 -0,031250196
-1,66 -1,659 -1,658 -1,657 -1,656 -1,655 -1,654 -1,653 -1,652 -1,651 -1,65
0,000394459 -0,000118982 -0,000632874 -0,001147217 -0,001662013 -0,002177263 -0,002692967 -0,003209128 -0,003725745 -0,004242821 -0,004760357
-1,66 -1,6599 -1,6598 -1,6597 -1,6596 -1,6595 -1,6594 -1,6593 -1,6592 -1,6591 -1,659
0,000394459 0,000343135 0,000291807 0,000240474 0,000189136 0,000137795 8,64481E-05 3,50973E-05 -1,62581E-05 -6,7618E-05 -0,000118982
-1,6593 -1,65929 -1,65928 -1,65927 -1,65926 -1,65925 -1,65924 -1,65923 -1,65922 -1,65921 -1,6592
3,50973E-05 2,99619E-05 2,48266E-05 1,96911E-05 1,45557E-05 9,42015E-06 4,28459E-06 -8,51014E-07 -5,98666E-06 -1,11224E-05 -1,62581E-05.
Более удобное изображение дано во вложении.
С точностью до четвёртого знака х = -1,6592.
(2+√5) = 1/8 + 3√5/8 + 15/8 + 5√5/8 = (1/2 + √5/2)³ = (1 + √5)³/8
(2 - √5) = 1/8 - 3√5/8 +15/8 - 5√5/5 = (1/2 - √5/2)³ = (1 - √5)³/ 8
∛(2 + √5) + ∛(2 - √5) = ∛(1 + √5)³/2³ + ∛(1 - √5)³/2³ = (1 + √5)/2 + (1 - √5)/2 = 1/2 - √5/2 + 1/2 + √5/2 = 1
ответ ОДИН
сделаем по другому
a = 2 + √5
b = 2 - √5
∛(2 + √5) + ∛(2 -√5) = c
∛(a*b) = ∛((2 + √5)(2 - √5)) = ∛(-1) = -1 (формула 1)
a + b = 2 + √5 + 2 - √5 = 4 (формула 2)
∛a + ∛b = c
∛a = c - ∛b (возводим в куб) (формула 3)
a = c³ - 3c²∛b + 3c∛b² - b
c³ = a + 3c²∛b - 3c∛b² + b = a + b + 3c∛b(c - ∛b) ={ по формуле 2 и 3} = 4 + 3c∛b*∛a = {формула 1} =4 - 3c
c³ + 3c - 4 = 0
c³ + c² + 4c - c² - c - 4 = 0
c²(c - 1) + c(c -1) + 4(c-1) = 0
(c - 1)(c² + c + 4) = 0
вспоминаем что ∛(2 + √5) + ∛(2 -√5) = c
первая скобка c = 1
вторая скобка c² + c + 4 = 0 D=1 - 4*4 = -15 дискриминант отрицательный, действительных решений нет (2 комплексных)
ответ 1