Пусть х1 и х2 - любые действительные числа (из множества R), удовлетворяющие единственному условию х2 > х1
Тогда функция y = f(x) называется:
- убывающей на R, если при этом: f(x2) < f(x1);
- возрастающей на R, если при этом: f(x2) > f(x1).
Объяснение:
Функция возрастающая - если большему аргументу отвечает большее значение фунцкции. Пусть у нас аргументы буду
По условию
1) Если мы умножим неравенство аргументов на -1, получится, что
Поскольку мы использовали те же значения функции (при данных значениях аргумента значения функций начальных и этих будет одинаково), то
Функция будет убывающей
2)
Поэтому функция возрастающая
1. Проведем прямую через точки В и С.
2. Точку А соединим с точкой С..
3.Вокруг отрезка [AC] нарисуем прямоугольник 1 × 2, в котором [AC] является диагональю и делит данный прямоугольник на 2 равных прямоугольныз треугольника.
4. Имеем прямоугольный треугольник с катетами длины 1 и 2 и гипотенузой [AC].
5. По формуле Пифагора вычисляем длину гипотенузы: 1²+2²=[AC]² =>
[AC]²=5 => [AC]=√5
ответ:Расстояние от точки А до прямой ВС равно √5≈2.2 клетки