М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
joeehazber
joeehazber
20.12.2022 16:48 •  Алгебра

Почему при решение этого предела через правило лопиталя неверно получается? \lim_{x \to \infty} \frac{x^3}{x^4}

👇
Ответ:
lineage29201682
lineage29201682
20.12.2022

Не понятно, что значит неверно. Если решать разными в т. ч и по Лопиталя будет 0.


Почему при решение этого предела через правило лопиталя неверно получается? [tex]\lim_{x \to \infty}
4,7(65 оценок)
Открыть все ответы
Ответ:
дншегзпгх
дншегзпгх
20.12.2022

Объяснение:

Одно из определений скалярного произведения векторов: (a,b) = |a|*|b|*cosx, где x - угол между векторами a и b. Этот угол всегда от 0 до 180 градусов, следовательно cosx >= 0 для любого x. |a| и |b| это длины векторов a и b соответственно. Длина всегда неотрицательна. Значит |a|*|b|*cosx >= 0 для любых векторов a, b. Теперь просто вместо b подставим a, вместо x подставим 0 (т.к. угол между вектором a и вектором a равен0). Получаем |a|*|a|*cos1 = |a|^2 >= 0 для любого вектора a, что и требовалось доказать. Теперь рассмотрим случай, когда (a,a) = 0. (a,a) = |a|*|a|*cos1 = |a|^2, если (a,a) = 0, значит |a|^2 = 0 -> |a| = 0. Получается, что длина вектора a равна 0, значит вектор a - нулевой вектор, что и требовалось доказать.

4,8(81 оценок)
Ответ:
рыжик59
рыжик59
20.12.2022

Раскладывать выражения на множители будем, используя группировки:

1). x – 3y + x2 – 9y2 = (x – 3y) + (x2 – 9y2).

По формуле а2 – b2 = (a – b)(а + b):

(x – 3y) + (x – 3y)(x + 3y).

Выносим выражение (x – 3y) за скобку:

(x – 3y)(1 + x + 3y).

2). 9m2 + 6mn + n2 – 25 = (9m2 + 2 ∙ 3mn + n2) – 25.

Упростим выражение в скобках по формуле квадрат суммы (а + b)2 = (а2 + 2ab + b2) и раскладываем как разность квадратов:

(3m + n)2 – 52 = (3m + n – 5)(3m + n + 5).

3). Выносим b3 за скобку и группируем:

ab5 – b5 – ab3 + b3 = b3(ab2 – b2 – a + 1) = b3((ab2 – b2) – (a – 1)) = b3[b2(a – 1) – (a – 1)].

Выносим общий множитель (a – 1) за скобку:

b3(a – 1)(b2 – 1).

4). 1– x2 + 10xy – 25y2 = 1– (x2 – 10xy + 25y2).

Выражение в скобке «сворачиваем» как  квадрат разности, к полученному выражению применяем формулу разности квадратов а2 – b2 = (a – b)(а + b):

1– (x – 5y)2 = (1– x + 5y)(1+ x – 5y).

ответ: 1). x – 3y + x2 – 9y2 = (x – 3y)(1 + x + 3y); 2). 9m2 + 6mn + n2 – 25 = (3m + n – 5)(3m + n + 5); 3). ab5 – b5 – ab3 + b3 = b3(a – 1)(b2 – 1); 4). 1– x2 + 10xy – 25y2 = (1– x + 5y)(1+ x – 5y).

Объяснение:

4,5(46 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ