ответ: V(катера)=4,5 км/час , V(течения)=1,5 км/час .
Скорость катера = х км/час , скорость течения реки = у км/час .
Скорость катера по течению = (х+у) км/час .
Скорость катера против течения = (х-у) км/час .
Скорость катера по течению в 2 раза больше скорости катера против течения , поэтому (х+у) = 2*(х-у) , х+у=2х-2у , 3у=х .
В стоячей воде за 4 часа катер х км .
За 2 часа по течению катер х+у)=2*(3у+у)=2*4у=8у км .
Так как в стоячей воде катер на 4 км больше, чем по течению, то получаем уравнение
4х-6=8у , 4х-8у=6 , 4*3у-8у=6 , 4у=6 ,
у=6/4=3/2=1,5 км/час - скорость течения
х=3*(3/2)=9/2=4,5 км/час - скорость катера
I рабочий за 21 часов и II рабочий за 28 часов
Объяснение:
Объём задания примем за 1. Пусть I рабочий выполнить задание за х часов, и по условию, I рабочий выполнить задание на 7 часов быстрее чем II рабочий, то есть II рабочий выполнить задание за (х+7) часов.
Тогда производительность I рабочего за 1 час будет 1/х часть задания, а производительность II рабочего за 1 час будет 1/(х+7) часть задания. По условию оба рабочих работая вместе выполнили задание за 12 часов, то за 1 час они вместе выполнили 1/12 часть задания. Приравниваем данные за 1 час работы:
1/х + 1/(х+7) = 1/12 | ·12·x·(x+7)
12·(x+7) + 12·x = x·(x+7)
12·x+84+12·x=х²+7·x
х²–17·x–84=0
D= (–17)²–4·1·(–84) = 289+336 = 625 = 25²
х₁=(17+25)/2 = 42/2 = 21 часов время работы I рабочего
х₂=(17–25)/2 = –4<0 не подходит.
Тогда время работы II рабочего равна
21 + 7 = 28 часов.