№1
Умножим первое ур-ние на 3, получим такую систему ур-ний
9х+3ау=36
9х-15у=36
вычтем второе из первого, получим
3ау+15у=0
или
3(а+5)у=0 делим на 3
(а+5)у=0
только два варианта решений:
1) а+5=0 а=-5 0*у=0 => у-любое - бесконечно множество решений
и х- тоже любое - тоже бесконечно множество решений
или
2) а+5≠0 у=0/(а+5) => у=0 - единственное решение
и х=4 - тоже единственное решение
значит, система всегда имеет решения (или одно или бесконечно много )
ответ: Г ) таких значений а не существует, при которых система не имеет решений - решения есть при любых а - или одно или бесконечно много
№2
2х-7у=6
8х-28у=24
разделим второе на 4, получим
2х-7у=6
2х-7у=6
получили фактически только одно единственное уравнение с двумя неизвестными
2х-7у=6
значения, например, у можно взять любое, тогда х вычисляется из уравнения
2х=6+7у
х=3+(7/2)у
ответ: Г ) у системы бесконечно много решений
Отдельно проверяем a=0 - там линейное уравнение. x=-1, значит a=0 подходит.
Отдельно решаем квадратное уравнение относительно x.
D=(2a-1)^2-4a*(a-1)=1
x=(1-2a+/-1)/2a<1. Для положительных a решаем 1-2a+1<2a, a>1/2.
Для отрицательных, 1-2a-1>2a. Получаем: a<0.
ответ: (-бесконечность; 0]U(1/2;+бесконечность).
Я думаю, что так.