Какой формулой пользоваться значения не имеет. На фотографиях представлены решения уравнения .
Если нарисовать числовую окружность, то значение есть координата точки
по оси
, ведь для любой точки числовой окружности справедливо, что
, т.е. точка
имеет координаты
.
Если провести прямую, параллельную оси через точку
, то она пересечётся с числовой окружностью в каких-то точках.
Чтобы было понятнее, советую нарисовать окружность радиусом и центром в точке
и отмечать всё, о чём я пишу.
Теперь рассмотрим эти точки пересечения.
Если , то пересечения будут в первой и второй четвертях.
Если , то пересечения будут в третьей и четвёртой четвертях.
Если , то пересечений тоже два и это
и
.
Если , то пересечение только одно, при чём точка пересечения будет и точкой касания, и равна она
.
Если же , то пересечение тоже одно, тоже является точкой касания, но значение равно
.
А теперь вспомним определение арксинуса. Арксинусом числа называют такой угол
, что
. Главное здесь то, что
может быть углом только первой четверти.
Отсюда же следует, что .
Это прекрасно работает для , ведь
.
Но только недавно мы проверили, что у нас может быть и не одно, а два решения. Как поступить в случае, если арксинус работает только для углов первой четверти, а нам нужно, чтобы он работал во второй? ответ прост. - это число, а
- угол.
Пусть прямая пересекается с окружностью в точках
в первой четверти и
во второй четверти, а точку
на оси
мы обзовём
. Рассмотрим треугольники
и
, в них:
Треугольники и
равны по двум катетам. Из этого следует и то, что их соответственные углы равны. Т.е. угол
и угол
.
Но углы мы отсчитываем от точки , обзовём её
. Тогда угол
. А это угол
первой четверти.
А угол - искомый угол второй четверти.
Как нам известно, все числа на числовой окружности получаются с поворота на определённый угол, пусть - этот угол. И если мы сделаем полный оборот, то мы хоть и придём в ту же самую точку, но вот число уже будет другое, ведь поворачивались мы на другой угол, равный
. Таким образом, чтобы описать все числа, находящиеся в точке на окружности с координатами
надо добавить
, где
- целое (чтобы получились полные обороты).
Вот так и получается первая формула.
Что до второй, то тут всё проще. Выводить её не буду, и так ответ уже километровый. В ней всё работает на чётности . Если
- чётное, то формула трансформируется в
, если нечётное, то в
, ну а
. Т.е. это тоже самое, только записанное в одну строчку. Использовать вторую формулу не советую. Она менее интуитивно понятная. Но если в ней разобраться, то решение уменьшается в размере, это правда.
Как-то так. Фу-у-у-ух. Много. Очень Много Букв.
P.S. Прости за задержку.
Обозначим числа x1, x2, x3, x4, разность арифметической прогрессии -d (минус, потому что она убывающая), тогда x2=x1-d, x3=x1-2d.
Причём d > 0
Знаменатель геометрической прогрессии обозначим q.
x3=x1-2d=x2*q=(x1-d)*q
x4=x2*q^2=(x1-d)*q^2
x1+x4=x1+(x1-d)*q^2=7
x2+x3=x1-d+x1-2d=6
Из 4 уравнения
x1=(6+3d)/2=3+1,5d
x2=a1-d=3+0,5d
x3=a2-d=3-0,5d=(3+0,5d)*q
q=(3-0,5d)/(3+0,5d)
q^2=(3-0,5d)^2/(3+0.5d)^2
x1+x4=3+1,5d+(3+0,5d)(3-0,5d)^2/(3+0,5d)^2=7
3+1,5d+(3-0,5d)^2/(3+0,5d)=7
Умножаем на знаменатель.
(3+1,5d)(3+0,5d)+(3-0,5d)^2=7(3+0,5d)
9+4,5d+1,5d+0,75d^2+9-3d+0,25d^2=21+3,5d
18+3d+d^2-21-3,5d=0
d^2-0,5d-3=0
2d^2-d-6=0
D=1-4*2(-6)=49=7^2
d1=(1-7)/4=-6/4<0 -не подходит
d2=(1+7)/4=2>0 - подходит.
d=2; x1=3+1,5d=3+3=6;
x2=6-2=4; x3=4-2=2;
q=x3/x2=2/4=0,5; x4=2*0,5=1.
ответ: 6; 4; 2; 1
y=132/x , x≠0,y≠0
0∠x ⇒0∠y , I.kv.
x∠0 ⇒ y∠0 , III.kv.
Otvet: I. i III.kv.