1) 11х = 36 - х
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование правой части уравнения:
36 - x = - ( x - 36)
Уравнение после преобразования:
11x = - (x - 36)
Упрощаем:
12x = 36
Сокращаем:
12(убираем)x = 12(убираем) * 3
x=3
2) 9х + 4 = 48 - 2х
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование правой части уравнения:
48 - 2x = -2 * (x - 24)
Уравнение после преобразования:
9x + 4 = -2 * (x - 24)
Упрощаем:
11x = 44
Сокращаем:
11(убираем)x = 11(убираем) * 4
x=4
3) 8 - 4х = 2х - 16
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование левой части уравнения:
8 - 4x = -4 * (x - 2)
Делаем преобразование правой части уравнения:
2x - 16 = 2 * (x - 8)
Уравнение после преобразования:
-4 * (x - 2) = 2 * (x - 8)
Упрощаем:
-6x = -24
Сокращаем:
-6(убираем)x = -6(убираем) * 4
x = 4
За остальным, если желаешь - в ЛС.
выпишем координаты данных векторов:
a)
координаты:
скалярное произведение векторов - число:
б)
координаты:
векторное произведение векторов - вектор, находим его координаты:
находим модуль(длину) полученного вектора:
в)
координаты:
смешанное произведение векторов - число, находим его:
г)
Координаты:
Векторы коллинеарны, если их соответствующие кординаты пропорциональны
Проверим это утверждение:
Данное равенство неверно, значит векторы b и c не коллинеарны
Векторы ортогональны, если их скалярное произведение равно нулю.
Проверим это утверждение:
- верно, значит данные векторы ортогональны
Векторы b и c ортогональны
д)
Координаты:
Три вектора компланарны, если их смешанное произведение равно нулю.
-2940 не равно нулю => данные векторы не компланарны.
ответ: