Что бы построить график данной функции, исследуем данную функцию:
1. Область определения: Так как данная функция имеет смысл при любом х. То:
2. Область значения: Так как данная функция - квадратичная, а так же, главный коэффициент а положителен.То, график данной функции - парабола и ее ветви направлены вверх.
Следовательно, область значения данной квадратичной функции находится следующим образом (при а>0): - где D дискриминант.
Найдем дискриминант:
Теперь находим саму область:
3. Нули функции: Всё что требуется , это решить уравнение.
Следовательно, функция равна нулю в следующих точках:
4. Зная нули функции, найдем промежутки положительных и отрицательных значений. Чертим координатную прямую, на ней отмечаем корни уравнения, записываем 3 получившийся промежутка и находим на данных промежутках знак функции:
То есть:
5. Промежутки возрастания и убывания. Для этого найдем вершину параболы:
Промежуток убывания:
Промежуток возрастания:
Если вы изучали понятие экстремума, то: --------------------------------------------------------------- 6. Экстремум функции. Так как а>0 и функция квадратичная. То вершина является минимумом данной функции. Следовательно: --------------------------------------------------------------- 7. Ось симметрии
Зная вершину, имеем следующее уравнение оси симметрии:
Основываясь на данных, строим график данной функции. (во вложении).
С производной
Отмечаем на числовой оси полученные нули производной и определяем промежутки знакопостоянства:
++++++[0]+++++>х
Там где производная положиьельная, сама функция возрастает
Изначальная функция непрерывна в точке х=0, поэтому
Возрастает на всей числовой оси, то есть (-оо; +оо)
Если функция возрастающая, определена на всей числовой оси и имеет область значений Е(у) =(-оо;+оо), то она пересекает ось Ох в одной точке.
Следовательно, исходное уравнение имеет всего лишь один корень
ответ: 1 корень
P.S. можно также построить график и по нему уже точно сказать, что уравнение имеет 1 корень