Объяснение:
1) прямая у=2x+37 не является касательной к графику функции f(x)=x³-3x²-7x+10 ни при каких значениях x. Докажем это. Предположим что это не так. пусть графики данных функций касаются в некоторой точке x₀=t. Тогда f(t)=t³-3t²-7t+10
f'(x)=3x²-6x-7; f'(t)=3t²-6t-7
Уравнение касательной будет иметь вид:
y=f(t)+f'(t)(x-t)=t³-3t²-7t+10+(3t²-6t-7)(x-t)=(3t²-6t-7)x-2t³+3t²+10=2x+37⇔
3t²-6t-7=2 и -2t³+3t²+10=37
3t²-6t-7=2
3t²-6t-9=0
t²-2t-3=0⇒t₁=-1, t₂=3
t=-1⇒-2t³+3t²+10=2+3+10=15≠37
t=3⇒-2t³+3t²+10=-16+27+10=21≠37
t∈∅
2) прямая у=x+1 касается к графику функции f(x)=ах²+2x+3
а≠0, иначе прямая касалась бы прямой.
Пусть графики данных функций касаются в некоторой точке x₀=t. Тогда f(t)=аt²+2t+3
f'(x)=2ax+2; f'(t)=2at+2
Уравнение касательной будет иметь вид:
y=f(t)+f'(t)(x-t)=аt²+2t+3+(2at+2)(x-t)=(2at+2)x-at²+3=x+1⇔2at+2=1 и -at²+3=1
2at+2=1⇒at=-0,5
2=at²=at·t=-0,5t⇒t=-4⇒a=1/8
3) x(t)=0,5t³-3t²+2t
v(t)=x'(t)=1,5t²-6t+2
v(6)=1,5·6²-6·6+2=54-36+2=20 м/с
Объяснение:
1) прямая у=2x+37 не является касательной к графику функции f(x)=x³-3x²-7x+10 ни при каких значениях x. Докажем это. Предположим что это не так. пусть графики данных функций касаются в некоторой точке x₀=t. Тогда f(t)=t³-3t²-7t+10
f'(x)=3x²-6x-7; f'(t)=3t²-6t-7
Уравнение касательной будет иметь вид:
y=f(t)+f'(t)(x-t)=t³-3t²-7t+10+(3t²-6t-7)(x-t)=(3t²-6t-7)x-2t³+3t²+10=2x+37⇔
3t²-6t-7=2 и -2t³+3t²+10=37
3t²-6t-7=2
3t²-6t-9=0
t²-2t-3=0⇒t₁=-1, t₂=3
t=-1⇒-2t³+3t²+10=2+3+10=15≠37
t=3⇒-2t³+3t²+10=-16+27+10=21≠37
t∈∅
2) прямая у=x+1 касается к графику функции f(x)=ах²+2x+3
а≠0, иначе прямая касалась бы прямой.
Пусть графики данных функций касаются в некоторой точке x₀=t. Тогда f(t)=аt²+2t+3
f'(x)=2ax+2; f'(t)=2at+2
Уравнение касательной будет иметь вид:
y=f(t)+f'(t)(x-t)=аt²+2t+3+(2at+2)(x-t)=(2at+2)x-at²+3=x+1⇔2at+2=1 и -at²+3=1
2at+2=1⇒at=-0,5
2=at²=at·t=-0,5t⇒t=-4⇒a=1/8
3) x(t)=0,5t³-3t²+2t
v(t)=x'(t)=1,5t²-6t+2
v(6)=1,5·6²-6·6+2=54-36+2=20 м/с
1) Разберемся, что такое сфера, описанная около куба. Сфера является описанной около куба, если все вершины куба находятся на поверхности сферы (см картинку). Также заметим, что диагональ куба (например, AC1) равна диаметру сферы. Ребро куба = 2 см, формула для нахождения диагонали куба и соответственно диаметра сферы: ребро куба * корень из 3. Итак, d = 3,464 см, тогда радиус R = 1,732 см.
2) Известна формула нахождения площади поверхности сферы: 4*pi*R^2. S = 4* 3,14*(1,732)^2 = 37,678 см^2.