А) Вероятность поражения цели одним выстрелом 0,8
Вероятность, что цель не будет поражена первым выстрелом = 1 - 0,8 = 0,2
Вероятность, что цель не будет поражена вторым выстрелом 1-0,8 = 0,2
Вероятность, что цель не будет поражена двумя выстрелами подряд: 0,2 * 0,2 = 0,04.
Таким образом, вероятность поражения цели двумя выстрелами 1-0,04 = 0,96
Б) Аналогично рассуждая, вероятность, что цель не будет поражена третьим выстрелом 1-0,8 = 0,2
Вероятность, что цель не будет поражена тремя выстрелами подряд: 0,2 * 0,2 * 0,2 = 0,008.
Таким образом, вероятность поражения цели тремя выстрелами 1-0,008 = 0,992
Таким образом, вероятность поражения цели тремя выстрелами возрастает по сравнению с вероятностью поражения цели двумя выстрелами на 0,992-0,96=0,032, т.е. примерно на 3% .
В) Вероятно, на практике систему ограничивают двумя разрешениями на выстрел, поскольку третий выстрел недостаточно существенно повышает вероятность поражения цели.
(1³ + 49³) + (2³ + 48³) + (3³ + 47³) + ...+ (24³ + 26³) + 25 = (1 + 49) · A₁ + (2 + 48) · A₂ + ... + (24 + 26) · A₂₄ + 25 = 50 · A₁ + 50 · A₂ + ...+ 50 · A₂₄ + 25 = 50 · (A₁ + A₂ + ... A₂₄) + 25 ⇒ делится на 25, так как каждое слагаемое делится на 25.