М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
markinaalisa2003
markinaalisa2003
16.08.2020 11:52 •  Алгебра

С1. представить в виде произведения: а) cos(α-β)-cos(α+β) b) sin2α + cos2α +1 2. найти решение уравнения sin x/3=-1/2 на отрезке [0; 3π]

👇
Ответ:
alina20332
alina20332
16.08.2020

a) cos(a-b) - cos(a+b) = cos(a)*cos(b) + sin(a)*sin(b) - (cos(a)*cos(b) - sin(a)*sin(b)) = cos(a)*cos(b) + sin(a)*sin(b) - cos(a)*cos(b) + sin(a)*sin(b) = 2sin(a)*sin(b)

b) sin(2a) + cos(2a) + 1 = 2*sin(a)*cos(a) + cos²(a) - sin²(a) + cos²(a) + sin²(a) = 2*sin(a)*cos(a) + 2*cos²(a) = 2*cos(a)*(sin(a) + cos(a))


sin(\frac{x}{3}) = -\frac{1}{2}

\frac{x}{3} = arcsin(-\frac{1}{2}) + 2πκ, κ∈Ζ

или

\frac{x}{3} = π - arcsin(-\frac{1}{2}) + 2πn, n∈Ζ

\frac{x}{3} = -\frac{\pi}{6} + 2πκ, κ∈Ζ

\frac{x}{3} = π + \frac{\pi}{6} + 2πn, n∈Ζ

\frac{x}{3} = \frac{7\pi}{6} + 2πn, n∈Ζ

x₁ = -\frac{\pi}{2} + 6πκ, κ∈Ζ

x₂ = \frac{7\pi}{2} + 6πn, n∈Ζ

Отбор корней произведем с неравенств.

x₁: 0 ≤  -\frac{\pi}{2} + 6πκ ≤ 3π

\frac{\pi}{2} ≤ 6πκ ≤ 3π + \frac{\pi}{2}

\frac{\pi}{2} ≤ 6πκ ≤ \frac{7\pi}{2}

\frac{1}{2} ≤ 6κ ≤ \frac{7}{2}

\frac{1}{12} ≤ κ ≤ \frac{7}{12}

Так как κ∈Ζ, то  κ∈∅

x₂: 0 ≤  \frac{7\pi}{2} + 6πn ≤ 3π

-\frac{7\pi}{2} ≤  6πn ≤ 3π - \frac{7\pi}{2}

-\frac{7\pi}{2} ≤  6πn ≤ - \frac{\pi}{2}

-\frac{7}{2} ≤  6n ≤ - \frac{1}{2}

-\frac{7}{12} ≤  n ≤ - \frac{1}{12}

Так как n∈Ζ, то  n∈∅ ⇒ нет корней на данном промежутке

4,4(34 оценок)
Открыть все ответы
Ответ:
vasipovismail
vasipovismail
16.08.2020
Пусть количество белых шариков равно Б, черных - Ч. Ясно, что хотя бы одно из этих чисел больше или равно 2, поскольку речь идет о двух одноцветных шариках.  При этом минимальное количество шариков, которые нужно вынуть, чтобы получить 2 одноцветных, равно 3 (первые 2 могут быть разноцветными, третий совпадет с одним из первых двух). С другой стороны, чтобы гарантировано получить 2 разноцветных шарика, нужно взять max(Б,Ч) +1 шарик. Значит, 

max(Б,Ч)+1=3, max(Б,Ч)=2.

Итак, возможны ситуации: Б=2, Ч=1 (симметричная ситуация Ч=2, Б=1), а также Б=Ч=2.  
4,5(73 оценок)
Ответ:
умничка267
умничка267
16.08.2020
Пусть количество белых шариков равно Б, черных - Ч. Ясно, что хотя бы одно из этих чисел больше или равно 2, поскольку речь идет о двух одноцветных шариках.  При этом минимальное количество шариков, которые нужно вынуть, чтобы получить 2 одноцветных, равно 3 (первые 2 могут быть разноцветными, третий совпадет с одним из первых двух). С другой стороны, чтобы гарантировано получить 2 разноцветных шарика, нужно взять max(Б,Ч) +1 шарик. Значит, 

max(Б,Ч)+1=3, max(Б,Ч)=2.

Итак, возможны ситуации: Б=2, Ч=1 (симметричная ситуация Ч=2, Б=1), а также Б=Ч=2.  
4,4(52 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ