1)а) f (х) = х + 2; F(x) =x²/2 + 2x + C б) f (х) = х^3 – 2х + 1; F(X) = x^4/4 -2x²/2 + x + C = x^4/4 - x² + x + X в) f (х) = х^2 + соs х F(X) = x³/3 + Sinx + C 2. Найдите ту первообразную функции, график которой проходит через начало координат (0;0) f (х) = 2х^2 – 3х + 1. F(x) = 2x³/3 - 3x²/2 + x + C 0 = 0 + C C = 0 ответ: F(x) = 2x³/3 - 3x²/2 + x 3. Пусть F(х) – первообразная функции f (х) = х^2 – х . f'(x) = 2x -1 2x -1 = 0 x = 1/2 это точка минимума. х∈( -∞; 1+2) - это промежуток убывания f(x) х∈(1/2;+∞) - это промежуток возрастания.
Каждую точку можно соединить с 14-ю другими. То есть из каждой точки можно провести 14 отрезков. Точек у нас 15. 14*15 = 210. Но так как отрезок, допустим, АВ и отрезок ВА - это один и тот же отрезок, то мы учли каждый отрезок по два раза. Поэтому, что б каждый отрезок учитывался по одному разу, разделим 210 на 2 и получим 105.
Первую точку можем соединить отрезком с 14-ю другими. С первой точкой вторую мы уже соединили, поэтому вторую точку можем соединить уже с 13-ю, по аналогии 3-ю точку с 12-ю, ... , 14-ю точку с одной, 15-я точка уже соединена со всеми. Подсчитаем количество отрезков. 14+13+12+11+10+9+8+7+6+5+4+3+2+1 = 105.
Пусть х,у - сторны квадрата
Тогда
2(х+у) = 32
х² + у² = 130
у = 16-х
х² + 256 - 32х + х² = 130
2х² -32х + 126 = 0
х² - 16х + 63 = 0
(х-9)(х-7) = 0
х₁ = 9
х₂ = 7
ответ
7 см, 9 см