А) q=12/-3=-4 б) c3=c2*q=12*(-4)=-48 в) c(n)=c1*q^(n-1)=-3*(-4)^(n-1)=3/4*(-4)^n г) c6=3/4*(-4)^6=3*4^5=3*1024=3072 д) Так как для произвольного члена прогрессии c(n) не выполняется ни равенство с(n+1)>c(n), ни равенство c(n+1)<c(n), то прогрессия не является ни возрастающей, ни убывающей. e) Это прогрессия -3, -12, -48,, т.е. прогрессия c c1=-3 и знаменателем q=4 ж) Одна, указанная выше. Другие прогрессиии имеют другой знаменатель q, поэтому даже если у них с1=-3, то другие члены с нечётными номерами не будут совпадать с членами данной прогрессии.
ненулевой остаток от деления на 4 может быть равен 1, 2 или 3.
если при делении на 15 остаток такой же, то и при делении на 60 тоже.
значит, это трехзначное число, которое можно представить как
100a + b + c = 60p + 1; или 60p + 2; или 60p + 3.
так как 60 делится на 10, то c = остатку, 1, 2 или 3.
и это число с есть среднее арифметическое чисел a и b.
если с = 1, то a = b = 1, но число 111 при делении на 60 дает остаток 51.
если с = 2, то а = 3, b = 1, или наоборот, a = 1, b = 3, или a = 4, b = 0.
но числа 132, 312 и 402 тоже не те остатки.
значит, c = 3. тогда возможны такие пары:
(a; b) = (4; 2); (2; 4); (1; 5); (5; 1); (6; 0)
из чисел 420, 240, 150, 510, 600 только 240 и 600 делятся на 60.
ответы: 243 и 603