Решение задачи.
1. Обозначим через х количество компьютеров на первом складе.
2. Найдем количество компьютеров на втором складе.
2х.
3. Найдем количество компьютеров на третьем складе.
3х.
4. Сколько компьютеров стало на первом складе?
х - 7.
5. Сколько компьютеров стало на третьем складе?
3х - 16.
6. Сколько компьютеров стало на втором складе?
2х + 17.
7. Сколько компьютеров стало на первом и третьем складе вместе?
х - 7 + (3х - 16) = 4х - 23.
8. Составим и решим уравнение.
2х + 17 = 4х - 23;
2х = 40;
х = 20.
9. Первоначальное количество компьютеров на первом складе равно х =20.
10. Сколько компьютеров было на втором складе?
20 * 2 = 40.
11. Сколько компьютеров было на третьем складе?
20 * 3 = 60.
ответ. На первом складе было 20 компьютеров, на втором складе 40 компьютеров, на третьем складе 60 компьютеров.
2x^2+9x-5=0
D=b^2-4ac=9^2-4*2(-5)=81+40=121 -корень-11
x1,2= -b+\-корень из D / 2a= -9+\-11 / 4= -5 ; 0,5
(х+3)(5х-3)=05x^2+12x-9=0
D=k^2-ac=6^2-5*(-9)=36+45=81 -корень-9
x1,2= -k+\-корень из D / a= -6+\-9 / 5= -3 ; 0,6
(4у-3)(5-8у) =0-32y^2+44y-15=0 | *(-1) __ 32y^2-44y+15=0
D=k^2-ac=(-22)^2-32*15=484-480=4 -корень-2
x1,2= -k+\-корень из D / a= 22+\-2 / 32= 0,625 ; 0,75
(6а+5)(а-8)=06a^2-43a-40=0
D=b^2-4ac=(-43)^2-4*6(-40)=1849+960=2809 -корень-53
x1,2= -b+\-корень из D / 2a=43+\-53 / 12= -5\6 ; 8
b₁; b₂=b₁q; b₃=b₁q² - три числа, образуют геометрическую прогрессию
b₁ + b₁q + b₁q² = 31
b₁(1+q+q²)=31
b₁ ; b₁q +8; b₁q² - составляют арифметическую прогрессию, т.е
d=a₂ - a₁;
d=a₃ - a₂
a₂ - a₁ = a₃ - a₂
b₁q + 8 - b₁ = b₁q² - (b₁q + 8)
b₁(q²- 2q +1)=16
Система
{b₁(1+q+q²)=31
{ b₁(q²- 2q +1)=16
находим из первого уравнения
b₁=31/(1+q+q²)
и
подставляем во второе:
31(q²-2q+1)/(1+q+q²)=16
31q²-62q+31=16q²+16q+16
15q²-78q +15=0
D=(-78)²-4·15·15=6084-900=5184=72^2
q=(78-72)/30=1/5 или q=(78+72)/30=5
b₁=25 или b₁=1
О т в е т.
25; 5; 1 или 1; 5; 25