X⁴-15x²-16=0 через замену у=х² получаем уравнение у²-15х - 64=0 находим d=b²-4ac=15²-4*1*(-16)=225+64=289 ⇒√d=17 находим у₁=(15-17): 2=-1 у₂=(15+17): 2= 16 вернёмся к замене х²= -1 уравнение решений не имеет х²=16 , следовательно х₁=4 и х₂= -4 2. рациональное уравнение : к общему знаменателю(3+х)(3-х) и найдём дополнительные множители к слагаемым. получаем уравнение (3х+1)(3-х)+х(3+х)=18 раскроим скобки 9х-3х²+3-х+3х+х²-18=0 -2х²+11х-15=0 домножим всё на (-1) 2х²-11х+15=0 найдём d=121-2*4*15=1 находим корни х₁=(11+1): 2=6 и х₂= (11-1): 2=5 оба корня знаменатель не обращают в 0 значит ответ 6 и 5
2^(2x) +(a+1)*2^x+1/4=0 Замена: 2^x =t, t>0 t^2+(a+1)t+1/4=0 | *4 4t^2+(4a+4)t+1=0 Должны выполнить условие: D>0 D=(4a+4)^2-4*4*1= (4a+4)^2-16>0; (4a+4-4)(4a+4+4)>0 4a(4a+8)>0 |:4 a(a+2)>0 a e (- беск.; -2)U(0; + беск.) Второй промежуток отпадает,т.к. не содержит наибольшего целого значения "a". Во втором промежутке этому условию соответствует "-3". Сделаем проверку: t^2 +(-3+1)t+1/4=0 t^2-2t +1/4=0 |:4 4t^2-8t+1=0 D=(-8)^2-4*4*1=48 t1= (8-V48)/8 = примерно 0,14 >0 t2= (8+V48)/8= примерно 1,9 >0 Условия того, что t>0 выполнены, значит исходное уравнение будет иметь два корня.
1) 4x² - 16x ≥ 0
4x(x - 4) ≥ 0
x(x - 4) ≥ 0
+ - +
[0][4]
x ∈ (- ∞ , 0] ∪ [4 ; + ∞)
2) x² < 25
x² - 25 < 0
(x - 5)(x + 5) < 0
+ - +
₀₀
- 5 5
x ∈ (- 5 ; 5)
3) x² - 6x + 9 ≤ 0
(x - 3)² ≤ 0
+ +
[3]
ответ : x = 3