М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
даша3649
даша3649
26.08.2020 05:58 •  Алгебра

Вычислите, используя формулы сокращенного умножения 159^2-159∙118+59^2

👇
Ответ:
152003152003
152003152003
26.08.2020
159²-159×118+59²=25281-18762+3481=10000=
=10⁴
4,4(7 оценок)
Открыть все ответы
Ответ:
Viktoriahhjgfdsaqw
Viktoriahhjgfdsaqw
26.08.2020
Сделаем замену |x| = y, тогда x^2 = |x|^2 = y^2.
Получаем уравнение:
y^2 - 6y + 5 - a = 0,
D/4 = 3^2 - (5-a) = 9 - 5 + a = 4+a,
Если D/4 <0,  то решений нет.
Если D/4 = 0, то единственное решение квадратного уравнения y=A, <=> |x|=A, не более двух корней (поэтому эти значения отметаем).
D/4 >0, <=> 4+a>0, <=> a>-4.
Тогда квадратное уравнение имеет два корня.
y1 = 3-(√a+4),
y2 = 3+(√a+4),
Видим, что y2 = 3+(√a+4)>=3>0, и уравнение |x|=y2 имеет два корня.
Уравнение же |x|=y1 = 3-(√a+4) может не иметь корней, иметь один корень (тот случай, который нас интересует) или два корня.
|x|=y1 = 3-(√a+4) = 0, тогда один корень
3=(√a+4),
3^2= 9 = a+4,
a = 9-4 = 5,
Условие a = 5>-4 выполняется. При этом (a=5) Корни совпасть не могут: уравнение |x|=y2 дает отрицательный и положительный корни, а
уравнение |x|=y1  дает корень равный нулю.
ответ. а=5.
4,4(65 оценок)
Ответ:
epoluektova
epoluektova
26.08.2020
x^2 \leq 1 
|x| \leq 1\\ -1 \leq x \leq 1

Приравняем к нулю

(a-x^2)(a+x-2)=0

Произведение равно нулю, если один из множителей равен нулю

a-x^2=0\\ x=\pm \sqrt{a}

Оценим в виде двойного неравенства

-1 \leq \sqrt{a} \leq 1\\ 0 \leq a \leq 1

Т.е. при a \in [0;1] - неравенства будут иметь общее решение, значит при a \in (-\infty;0)\cup(1;+\infty) неравенства общих решений не будет иметь

a+x-2=0\\ x=2-a

Снова оценим в виде двойного неравенства

-1 \leq 2-a \leq 1\,\, |-2\\ \\ -3 \leq -a \leq -1|\cdot (-1)\\ \\ 1 \leq a \leq 3

При a \in (-\infty;1)\cup(3;+\infty) неравенства общих решений не имеют

Общее решение: a \in (-\infty;0)\cup(3;+\infty)

Проверим будут ли неравенства иметь решения при a=0 и а=3

Если а=0, то неравенство запишется так -x^2(x-2)\ \textless \ 0\\ \\ x^2(x-2)\ \textgreater \ 0

Корни будут х=0 и х=2

___-___(0)__-___(2)__+___

x ∈ (2;+∞) 

Следовательно общих решений с x ∈ [-1;1] нет, значит а=0 подходит

Если а=3, то (3-x^2)(x+1)\ \textless \ 0

Приравниваем к нулю:

(3-x^2)(x+1)=0\\ \left[\begin{array}{ccc}3-x^2=0\\ x+1=0\end{array}\right\Rightarrow \left[\begin{array}{ccc}x_{1,2}=\pm \sqrt{3} \\ x_3=-1\end{array}\right

___+___(-√3)___-___(-1)___+____(√3)___-___

x ∈ (-√3;-1) U (√3;+∞) 

Общее решение неравенства (3-x²)(x+1)<0 с неравенство x²≤1 нет, следовательно а=3 тоже подходит

ответ: a \in (-\infty;0]\cup[3;+\infty)
4,4(34 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ