Подробное решение, не могу разобраться. всего три примера) преобразовать произведение тригонометрической функции в сумму: 1. 2sin·sin2·sin3решить на числовой окружности неравенство: 2. sin x (1 делить на корень из 2)представить в виде произведения или константы и функции: 3. sin x + cos2x + sin3x + cos4x
Cos(5*x) = 0 5*x = acos(0) + pi*n, или 5*x = pi/2 + pi*n, где n - любое целое число разделим обе части полученного ур-ния на 5 получим ответ: x = (pi/2 + pi*n)/5 sin4x=0 4*x = asin(0) + 2*pi*n, или 4*x = 2*pi*n разделим обе части полученного ур-ния на 4 получим ответ: x = pi*n/2 sinx/2=0 x/2 = asin(0) + 2*pi*n, или x/2 = 2*pi*n разделим обе части полученного ур-ния на 1/2 получим ответ: x = 4*pi*n cosx/3=0 x/3 = acos(0) + pi*n, или x/3 = pi/2 + pi*n разделим обе части полученного ур-ния на 1/3 получим ответ: x = 3*(pi/2 + pi*n) sin(3x+п/4)=0 3*x + pi/4 = asin(0) + 2*pi*n, или 3*x + pi/4 = 2*pi*n перенесём pi/4 в правую часть ур-ния с противоположным знаком, итого: 3*x = -pi/4 + 2*pi*n разделим обе части полученного ур-ния на 3 получим ответ: x = (-pi/4 + 2*pi*n)/3 cos(8x+п/3)=0 8*x + pi/3 = acos(0) + pi*n, или 8*x + pi/3 = pi/2 + pi*n перенесём pi/3 в правую часть ур-ния с противоположным знаком, итого: 8*x = pi/6 + pi*n разделим обе части полученного ур-ния на 8 получим ответ: x = (pi/6 + pi*n)/8 sin(x/7+п/3)=0 x/7 + pi/3 = asin(0) + 2*pi*n, или x/7 + pi/3 = 2*pi*n перенесём pi/3 в правую часть ур-ния с противоположным знаком, итого: x/7 = -pi/3 + 2*pi*n разделим обе части полученного ур-ния на 1/7 получим ответ: x = 7*(-pi/3 + 2*pi*n) cos(x/3+п/6)=0 x/3 + pi/6 = acos(0) + pi*n, или x/3 + pi/6 = pi/2 + pi*n, где n - любое целое число перенесём pi/6 в правую часть ур-ния с противоположным знаком, итого: x/3 = pi/3 + pi*n разделим обе части полученного ур-ния на 1/3 получим ответ: x = 3*(pi/3 + pi*n)
1) 11х = 36 - х
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование правой части уравнения:
36 - x = - ( x - 36)
Уравнение после преобразования:
11x = - (x - 36)
Упрощаем:
12x = 36
Сокращаем:
12(убираем)x = 12(убираем) * 3
x=3
2) 9х + 4 = 48 - 2х
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование правой части уравнения:
48 - 2x = -2 * (x - 24)
Уравнение после преобразования:
9x + 4 = -2 * (x - 24)
Упрощаем:
11x = 44
Сокращаем:
11(убираем)x = 11(убираем) * 4
x=4
3) 8 - 4х = 2х - 16
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование левой части уравнения:
8 - 4x = -4 * (x - 2)
Делаем преобразование правой части уравнения:
2x - 16 = 2 * (x - 8)
Уравнение после преобразования:
-4 * (x - 2) = 2 * (x - 8)
Упрощаем:
-6x = -24
Сокращаем:
-6(убираем)x = -6(убираем) * 4
x = 4
За остальным, если желаешь - в ЛС.