4 (м) ткани на 1 платье.
2 (м) ткани на 1 юбку.
Объяснение:
На изготовление четырех платьев и пяти юбок израсходовали двадцать шесть метров ткани, а на изготовление шести платьев и четырех юбок израсходовали тридцать два метра ткани. Сколько ткани потребуется на пошив одного платья и сколько ткани потребуется на пошив одной юбки?
х - ткани на 1 платье
у - ткани на 1 юбку
Согласно условию задачи составляем систему уравнений:
4х+5у=26
6х+4у=32
Разделим второе уравнение на 4 для упрощения:
4х+5у=26
1,5х+у=8
Выразим у через х во втором уравнении, подставим выражение в первое уравнение и вычислим х:
у=8-1,5х
4х+5(8-1,5х)=26
4х+40-7,5х=26
-3,5х=26-40
-3,5х= -14
х= -14/-3,5
х=4 (м) ткани на 1 платье.
у=8-1,5х
у=8-1,5*4
у=8-6
у=2 (м) ткани на 1 юбку.
Проверка:
4*4+5*2=26
6*4+4*2=32, верно.
a=4
(2;1)
Объяснение:
Из условия известно, что первое уравнение этой системы обращается в верное равенство при x= 8 и y= −7; тогда, подставив эти значения переменных в первое уравнение, можно найти коэффициент a.
Получим:
ax+3y=11;8a+3⋅(−7)=11;8a=11−(−21);8a=32;a=4.
При таком значении коэффициента a данная система примет вид:
{4x+3y=115x+2y=12
Для решения этой системы уравнений графически построим в одной координатной плоскости графики каждого из уравнений.
Графиком уравнения 4x+3y=11 является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x −1 2
y 5 1
Построим на координатной плоскости xОy прямую m, проходящую через эти две точки.
Графиком уравнения 5x+2y=12 также является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x 0 2
y 6 1
Построим на координатной плоскости xОy прямую n, проходящую через эти две точки.
Получим:
Прямые m и n пересекаются в точке A, координаты которой являются решением системы, т. е. A(2;1)
Объяснение: