ответ:931
Объяснение:1. Заметим, что 735 имеет следующее разложение на простые множители:
735=72⋅3⋅5,
отсюда следует, что числа x, y, z состоят из тех же простых чисел 7, 3, 5:
x=7a1⋅3a2⋅5a3;
y=7b1⋅3b2⋅5b3;
z=7c1⋅3c2⋅5c3.
При этом
0≤a1,b1,c1≤2;
0≤a2,b2,c2≤1;
0≤a3,b3,c3≤1.
2. По правилу нахождения наименьшего общего кратного получим
НОК(7a1⋅3a2⋅5a3;7b1⋅3b2⋅5b3;7c1⋅3c2⋅5c3)=7max(a1,b1,c1)⋅3max(a2,b2,c2)⋅5max(a3,b3,c3).
3. Итак, задача свелась к нахождению числа решений системы уравнений:
⎨max(a1,b1,c1)=2;max(a2,b2,c2)=1;max(a3,b3,c3)=1.
Так как каждое уравнение содержит разные неизвестные, то для того чтобы найти количество решений системы, нужно найти количество решений каждого из уравнений и перемножить полученные значения.
4. Начнём с первого уравнения. Требуется найти количество целых неотрицательных чисел a1,b1,c1, удовлетворяющих уравнению max(a1,b1,c1)=2.
Напомним, что 0≤a1,b1,c1≤2. Отсюда следует, что тройка чисел a1,b1,c1 является решением уравнения, если хотя бы одно из чисел a1,b1,c1 равно 2. Для того чтобы посчитать число таких троек, вычтем из количества всевозможных троек чисел a1,b1,c1 с условием 0≤a1,b1,c1≤2 (таких троек ровно 33=27 штук) число троек a1,b1,c1 с условием 0≤a1,b1,c1≤2, в которых 2 ни разу не встречается (таких троек ровно 23=8 штук). Отсюда находим, что первое уравнение системы имеет 27−8=19 решений.
5. Точно так же поступим при подсчёте числа решений второго уравнения системы. Требуется найти количество целых неотрицательных чисел a2,b2,c2, удовлетворяющих уравнению max(a2,b2,c3)=1.
Напомним, что 0≤a2,b2,c2≤1.
Тройка чисел a2,b2,c2 является решением уравнения, если хотя бы одно из чисел a2,b2,c2 равно 1. Но только одна тройка чисел a2,b2,c2 не удовлетворяет этому условию, это тройка a2=b2=c3=0. Все остальные тройки хотя бы одну 1 содержат. Поскольку троек чисел a2,b2,c2 с условием 0≤a2,b2,c2≤1 ровно 23=8 штук, то второе уравнение системы имеет 8−1=7 решений. Точно так же получаем, что и третье уравнение системы имеет 7 решений.
6. Для того чтобы подсчитать число решений системы, а значит, и исходного уравнения, остаётся перемножить полученные нами числа. Имеем
19⋅7⋅7=931.
Итак, исходное уравнение имеет ровно 931 решение.
ДОБАВИТЬ В ИЗБРАННОЕ
Урок по теме: «Функция у=kx и её график»
Цель – систематизировать знания по изученной теме; развивать умения находить значение функции по заданному значению аргумента, значение аргумента, если задана функция.
Ход урока:
1.Актуализация знаний.
Повторить определение функции, аргумента задания функции, понятие графика функции.
2. Устная работа.
1) Функция задана формулой у=5х-4. Закончите решение:
у(2)=5·2-4=…
у(3)=5·3-4=…
у(4)=…
2) Функция задана формулой у=-3х+2.Найдите значение аргумента, при котором у=13.
Подставим вместо у число 13 и получим 13=-3х+2.Доделайте задание.
3) Функция задана формулой у= 2х. Заполните таблицу:
3. Новый материал.
1) Построим график функции у=3х.
а) Заполните таблицу:
б) Задайте координатную плоскость и изобразите на ней полученные координаты.
в) Проведите через полученные точки линию.
г) Какая фигура получилась в результате построения? Пересекает ли она оси координат? А через что она проходит? Сколько можно задать точек для построения графика функции?
2) Выводы запишите самостоятельно (графиком функции у=кх является прямая, которая проходит через начало координат; для построения графика функции у=кх достаточно двух точек).
3) Исследовательская работа: Влияние коэффициента пропорциональности k на расположение графика функции в координатной плоскости.
y=kx
к>0
у=2·х
к=0
у=0·х
к<0
у=-2·х

Запишите выводы.
4. Закрепление умений и навыков:
Учебник Колягина и др. №558,559.
5. Обобщение по теме и подведение итогов.
6. Домашнее задание: №560.