Розв’язання. Маємо у = х + 5, виразимо х через у: x = y – 5, x = (y - 5)/2. Позначимо аргумент через х, а функцію - через у і остаточно отримаємо y= (x - 5)/2 або g(x)=(x-5)/2.
Арифметическая прогрессия ,значит, каждый следующий член больше предыдущего на определенное число. а2=а1+d a3=а1+d+d
a1+а1+d+а1+d+d=18 3a1+3d=18 3*(a1+d)=18 a1+d=18/3 а1+d=6 - второй член арифм. прогрессии также арифм. прогрессию можно записать как: а1+а2+а3=18 а1+а3+6=18 а1+а3=12 а1=12-а3(это наша будущая подстановка) b2=6+3 b2=9 - второй член геометр. прогрессии теперь воспользуемся свойством геометр. прогрессии (bn)^2=b(n-1)*b(n+1) n-1 и n+1 номер члена прогрессии (b2)^2=(a1+1)*(a3+17) 9^2=(a1+1)*(a3+17) 81=(a1+1)*(a3+17) теперь вводим систему: 81=(a1+1)*(a3+17) а1=12-а3 в 1 уравнение подставим второе 81=(12-а3+1)*(a3+17) 81=(13-а3)*(a3+17) пусть а3=х 81=(13-х)*(х+17) 81=13х +221-х^2-17x 81=-x^2-4x+221 x^2+4x-221+81=0 x^2+4x-140=0 по т. виета х1+х2=-4 х1*х2=-140 х1=10 х2=-14 (не подходит, -14<6,а3<а2, у насвозрастающая) 10=а3 18=10+6+а1 а1=2 ответ: 2,6,10
Пишу ход своих мыслей: Если скорость одного велосипедиста больше на 3 км/ч., но известно, что один велосипедист преодолевает этот путь на один час быстрее, тогда: 1) 36:4=9 км/ч - скорость велосипедиста преодолевшего путь на 1 час позже. 2) 9+3=12 км/ч -скорость велосипедиста преодолевшего путь на 1 час быстрее. 3) 36:12=3 ч. время велосипедиста преодолевшего путь на 1 час быстрее 4) 36:9=4 ч. время велосипедиста преодолевшего путь на 1 час позже ответ: 9 км/ч скорость первого велосипедиста, 12 км/ч скорость второго велосипедиста.
Розв’язання. Маємо у = х + 5, виразимо х через у: x = y – 5, x = (y - 5)/2. Позначимо аргумент через х, а функцію - через у і остаточно отримаємо y= (x - 5)/2 або g(x)=(x-5)/2.