Пусть в 1 группе х студентов, а во 2 группе у студентов. { x + y > 52 { x > 2(y - 21) { y > 5(x - 16) Раскрываем скобки { x + y > 52 { x > 2y - 42 { y > 5x - 80 Перенесем числа во 2 и 3 неравенствах влево { x + y > 52 { 2y - x < 42 { 5x - y < 80 Сложим 2 и 3 неравенства. Умножаем 1 уравнение на -1 { -x - y < -52 { 4x + y < 122 Складываем неравенства 3x < 70 x < 70/3 <= 69/3 x <= 23
Если x = 23, то y > 52 - 23; y > 29, то есть y >= 30 Пусть x = 23, y = 30, проверяем по 2 и 3 неравенствам { 23 > 2(30 - 21); 23 > 18 - подходит { 30 > 5(23 - 16); 30 > 35 - не подходит. Пусть x = 23, y = 36 { 23 > 2(36 - 21); 23 > 30 - не подходит
Если x = 22, то y > 52 - 22; y > 30; y >= 31 { 22 > 2(31 - 21); 22 > 20 - подходит { 31 > 5(22 - 16); 31 > 30 - подходит ответ: x = 22; y = 31
Замечаем что все показатели степени нечетные числа, а значит если х отрицательное, то и его степень число отрицательное
Поэтому если х отрицательное то слева число отрицательное (как сумма отрицательных) Если х=0, то в левой части уравнения очевидно 0. Этот случай тоже не подходит Если 0<x<1то для каждой степени а значит л.ч. < --(использовали формулу арифмитической прогрессии с первым членом 1 и разностью 1 иначе для суммы первых натуральных чисел справедлива формула )
При x=1 Получаем равенство 1+2+...+20=210 x=1 - решение
и При x>1 получаем что л.ч. больше правой так как и л.ч. > ответ: 1
Пусть a, b, t — возраст Ани, Вани, мамы сейчас. Тогда b-a лет назад Ваня был в возрасте Ани и в это времяa-(b-a) — возраст Ани,b-(b-a) — возраст Вани,t-(b-a) — возраст мамы.Из первого условия задачи следует уравнениеt-(b-a)=a+b-3с решениемt=2b-3, показывающим зависимость возраста мамы от возраста Вани.Осталось решить еще одно уравнение, вытекающее из заключительного условия задачиb=2b-3,с решением b=3. К последнему условию можно сделать содержательное пояснение: b-3 года назад возраст мамы действительно составлял возраст Вани сейчасt-(b-3)=2b-3 — (b-3) = bа возрвст Ваниb — (b-3) = 3.
решение представлено на фото