x1 = -5
D = 169+120 = 289
x1 = (-13-17)/6 = -5
x2 = (-13+17)/6 = 2/3
Постройте график функции y= x^2 - 4x + 4 найти область значения функции
y= x² - 4x + 4 ;
y = (x -2)²
График этой функции парабола , получается из графики функции у =x² перемещением по положительному направлению оси абсцисс _Ox
( направо) на две единицы . Вершина параболы оказывается в точке
на оси абсцисс с координатой x =2 * * * точка B(0 ; 2)_точка миним. * * *
ветви направленные вверх (по "+ 0у" ) .
График ось ординат пересекает в точке (0 ; 4) * * *x =0 ⇒y =(0 -2)² =4.* * *
y=(x -2)² ≥0
Минимальное значение функции равно нулю : Minу =0 , если x =2 .
Максимальное значение не имеетю
Область значения функции : E(y) = [ 0 ; +∞)
а) {x-y-1=0
{x+y-5=0
х=1+у
1+у+у-5=0
2у=4
у=2
х=1+у=1+2
х=3
{x-y-2=0
{x+y-6=0
х=6-у
6-у-у-2=0
-2у=-4
у=2
х=6-у=6-2
х=4
в) {x-y-2=0
{3x-2y-9=0
х=2+у
3(2+у)-2у-9=0
6+3у-2у-9=0
у=3
х=2+у=2+3
х=5
г) {x-2y-3=0
{5x+y-4=0
х=3+2у
5x+y-4=0
5(3+2у)+у-4=0
15+10у+у-4=0
11у=-11
у=-1
х=3+2у=3+2(-1)=3-2
х=1
{x+2y-11=0
{4x-5y+8=0
х=11-2у
4х-5у+8=0
4(11-2у)-5у+8=0
44-8у-5у+8=0
-13у=52
у=-4
х=11-2у=11-2(-4)=11+8
х=19
{x+4y-2=0
{3x+8y-2=0
х=2-4у
3(2-4у)+8у-2=0
6-12у+8у-2=0
-4у=-4
у=1
х=2-4у=2-4*1=2-4
х=-2
D=13^2-4*3*(-10) =169+120=√289=17
x1=(-13+17):6=4:6=0,6
x2=(-13-17):6=-30:6=-5
ответ:-5