15 билетов*2 вопроса=30, студент знает 25 из 30. Или 5/6 вероятность ответа на вопрос.
а)"ответить на 2 вопроса из одного билета" 5/6*5/6=25/36;
б)"на один вопрос из первого билета и на указанный дополнительный вопрос из другого билета" ответил на первый(5/6), не ответил на второй(1-5/6), ответил на третий(5/6). 5/6*1/6*5/6=25/216;
ответить а или б, сложить вероятности: 25/36+25/216=175/216;
Правда складывать можно только для независимых событий, то есть
ответил на первый в обоих случаях повторяется: 5/6 - это вариации не независимы, их нельзя складывать!
ответил(5/6) и не ответил(1/6) на второй - независимы друг от друга.
ответил на третий(5/6) - независим.
Формула 5/6(5/6+1/6*5/6)=175/216 ответ тот же самый конечно же, хотя формула чуть иная.
ax3 + bx2 + cx + d = 0, a не равно 0.
Заменяя в этом уравнении x новым неизвестным y, связанным с x равенством x = y - (b / 3a), кубическое уравнение можно привести к более простому (каноническом) виду:
y3 + py + q = 0,
где
, ,
решение же этого уравнения можно получить с формулы Кардано.
Формуле Кардано
Для решения кубического уравнения, приведенного к каноническому виду, используется формула Кардано:
Если коэффициенты кубического уравнения - действительные числа, то вопрос о характере его корней зависит от знака выражения, стоящего под квадратным корнем в формуле Кардано. Если > 0, то кубическое уравнение имеет три различных корня: один из них действительный, два других - сопряженные комплексные; если = 0, то все три корня действительные, два из них равны; если < 0, то все три корня действительные и различные.
Выражение только постоянным множителем отличается от дискриминанта кубического уравнения D = -4p3 - 27q2.
Решить уравнение по формуле Кардано можно в автоматическом режиме прямо на этом сайте -