Прямая у=-х+6 строится по 2-м точкам: например, пустьх=0, у=6, т.(0;6); пусть х=6, у=-6+6=0; т.(6;0); парабола у=3x^2+6x; вершина: х=-в/2а=-6/6=-1; у=3-6=-3; т.(-1;-3); точки для построения: иксы берем слева и справа от х вершины; игреки вычисляем, подставляя х в формулу: (0;0); (1;9); (-2;0); (-3;9); точки пересечения: (-3;9) и (0,5;5,5).это графически, можно системой этих 2-х уравнений: у=6-х; 6-х=3x^2+6x, 3x^2+6x+x-6, 3x^2+7x-6=0, D=49-4*3*(-6)=49+72=121=11^2, x(1)=-7+11/6=2/3; х(2)=-7-11/6=-18/6=-3; у(1)=6-2/3=5ц1/3; у(2)=6+3=9; т.(2/3;5ц1/3); (-3;9) - это точки пересечения.
Что бы построить график данной функции, исследуем данную функцию:
1. Область определения: Так как данная функция имеет смысл при любом х. То:
2. Область значения: Так как данная функция - квадратичная, а так же, главный коэффициент а положителен.То, график данной функции - парабола и ее ветви направлены вверх.
Следовательно, область значения данной квадратичной функции находится следующим образом (при а>0): - где D дискриминант.
Найдем дискриминант:
Теперь находим саму область:
3. Нули функции: Всё что требуется , это решить уравнение.
Следовательно, функция равна нулю в следующих точках:
4. Зная нули функции, найдем промежутки положительных и отрицательных значений. Чертим координатную прямую, на ней отмечаем корни уравнения, записываем 3 получившийся промежутка и находим на данных промежутках знак функции:
То есть:
5. Промежутки возрастания и убывания. Для этого найдем вершину параболы:
Промежуток убывания:
Промежуток возрастания:
Если вы изучали понятие экстремума, то: --------------------------------------------------------------- 6. Экстремум функции. Так как а>0 и функция квадратичная. То вершина является минимумом данной функции. Следовательно: --------------------------------------------------------------- 7. Ось симметрии
Зная вершину, имеем следующее уравнение оси симметрии:
Основываясь на данных, строим график данной функции. (во вложении).