М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Верче02
Верче02
24.02.2021 18:39 •  Алгебра

Реши предложенную . не забудь указать решение и свои комментарии.определи, сколько жемчужин в каждом из пяти сундуков, учитывая представленныйрисунок и известные условия: 1. в центральном сундуке находится третья часть от 50% жемчужин, хранящихся в сундуке№5.2. во втором сундуке находится 200%
жемчужин от суммы жемчужин в сундуках №3 и№5.3. в одном из пяти сундуков ровно 60% от 200 жемчужин.4. в сундуке №1 вполовину меньше жемчужин, чем в сундуке №5, и на 10 меньше, чем всундуке №4.5. жемчужины во втором сундуке справа составляют 25% от количества жемчужин вовтором сундуке.

👇
Ответ:
mazaliaopera
mazaliaopera
24.02.2021

я не знаю ответа т.к. нет рисунка!

4,5(30 оценок)
Открыть все ответы
Ответ:
morshchininao
morshchininao
24.02.2021

Пусть y = uv, тогда y' = u'v + uv':

Решим левый интеграл:

cosx = \frac{1-t^2}{1+t^2} => dx = \frac{2}{1+t^2}dt\\ \int \frac{2(1+t^2)}{(1+t^2)(1-t^2)} dt = \int \frac{2}{(1-t)(1+t)}dt = \int ( \frac{1}{1-t} + \frac{1}{1+t})dt = ln(1-t)+ln( 1+t) = ln|1-t^2| = ln|1-tg^2\frac{x}{2}| \\" class="latex-formula" id="TexFormula2" src="https://tex.z-dn.net/?f=%5Cint%20%5Cfrac%7Bdx%7D%7Bcosx%7D%3B%5C%5C%20tg%5Cfrac%7Bx%7D%7B2%7D%3Dt%20%3D%3E%20cosx%20%3D%20%5Cfrac%7B1-t%5E2%7D%7B1%2Bt%5E2%7D%20%3D%3E%20dx%20%3D%20%5Cfrac%7B2%7D%7B1%2Bt%5E2%7Ddt%5C%5C%20%20%5Cint%20%5Cfrac%7B2%281%2Bt%5E2%29%7D%7B%281%2Bt%5E2%29%281-t%5E2%29%7D%20dt%20%3D%20%5Cint%20%5Cfrac%7B2%7D%7B%281-t%29%281%2Bt%29%7Ddt%20%3D%20%5Cint%20%28%20%5Cfrac%7B1%7D%7B1-t%7D%20%2B%20%5Cfrac%7B1%7D%7B1%2Bt%7D%29dt%20%3D%20ln%281-t%29%2Bln%28%201%2Bt%29%20%3D%20ln%7C1-t%5E2%7C%20%3D%20ln%7C1-tg%5E2%5Cfrac%7Bx%7D%7B2%7D%7C%20%20%5C%5C" title="\int \frac{dx}{cosx};\\ tg\frac{x}{2}=t => cosx = \frac{1-t^2}{1+t^2} => dx = \frac{2}{1+t^2}dt\\ \int \frac{2(1+t^2)}{(1+t^2)(1-t^2)} dt = \int \frac{2}{(1-t)(1+t)}dt = \int ( \frac{1}{1-t} + \frac{1}{1+t})dt = ln(1-t)+ln( 1+t) = ln|1-t^2| = ln|1-tg^2\frac{x}{2}| \\">

Возвращаемся к исходному:

4,5(56 оценок)
Ответ:
LightMAN2017
LightMAN2017
24.02.2021

Построим график функции у = 8 + 2x - x²

Для этого преобразуем её к виду

у = -(х² - 2х + 1) + 9

у = -(х - 1)² + 9

Видим, что парабола у = -х² сдвинута по оси абсцисс на 1 вправо и на 9 вверх. То есть её вершина находится в точке с координатами (1; 9).

Найдём координаты точек пересечения параболы с осью ординат.    

При х = 0   у = 8

И координаты точек пересечения параболы с осью абсцисс

у = 0

- х² + 2х + 8 = 0

D = 2² - 4 · (-1) · 8 = 36

√D = 6

х₁ = -0,5(-2 - 6) = 4

х₂ = -0,5(-2 + 6) = -2

Итак мы получили ещё две точки параболы (4; 0) и (-2; 0).

Строим параболу (веточки её опущены вниз).

Смотри прикреплённый рисунок.

1) по графику видим, что функция убывает на интервале х ∈ [1; +∞)

2) множество решений неравенства 8 + 2x - x^2 ≤ 0 есть объединение двух интервалов х∈ (-∞; -2] ∪ [4; +∞)

4,7(98 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ