1) Область определения – множество значений х при которых функция имеет смысл. Область определения D(f) = ( -oo ; + oo) т.к. нет ограничений (нет деления на переменную, нет корней и т.д.)
Заметим что графиком будет парабола Старший коэффициент отрицательный => ветви параболы направлены вниз.
2) Найдем координаты вершины:
Найдем значение функции в вершине Вершина ( -1 ; 4) Итак Вершина в точке (-1;4) и ветви вниз, значит это наибольшее значение. Теперь легко определить Область значений Значит область значений E(f) = (-oo; 4]
1.Область определения функции: D(y)=R - все действительные числа. 2. Четная или нечетная функция, проверим y(-x)=(-x)⁴-(-x)²=x⁴-x²=y(x) - четная 3. Критические точки, возрастание и убывание функции y'=4x³-2x y'=0 2x(2x²-1)=0 x1=0; x2=√2/2 x3=-√2/2
___-__(-√2/2)__+__(0)__-__(√2/2)___+___> убыв возр убыв возр Итак, функция убывает на промежутке (-∞;-√2/2)U(0;√2/2), возрастает - (-√2/2;0)U(√2/2;+∞), в точке х=-√2/2 и х=√2/2 функция имеет локальный минимум, а в точке х=0 - локальный максимум 4. Точки перегиба y''=12x²-2 12x²-2=0 x1=-√6/6; x2=√6/6
__+__(-√6/6)__-___(√6/6)___+___>
Вертикальні асимптоти немає Горизонтальних і похилих асимптот немає
y = - x² - 2x + 3
1) Область определения – множество значений х при которых функция имеет смысл.
Область определения D(f) = ( -oo ; + oo)
т.к. нет ограничений (нет деления на переменную, нет корней и т.д.)
Заметим что графиком будет парабола
Старший коэффициент отрицательный => ветви параболы направлены вниз.
2) Найдем координаты вершины:
Найдем значение функции в вершине
Вершина ( -1 ; 4)
Итак Вершина в точке (-1;4) и ветви вниз, значит это наибольшее значение. Теперь легко определить Область значений
Значит область значений E(f) = (-oo; 4]
3) Промежутки возрастания, убывания:
f(х) возрастает на ( -оо ; - 1 )
f(х) убывает на ( - 1 ; +оо)
4) Нули функции:
- x² - 2x + 3 = 0
x² + 2x - 3 = 0
По теореме Виета
x1+х2 = -2,
x1х2 = -3
x1 = -3
х2 =1
+
_________-3__________________1_________________ - -
5) Промежутки знакопостоянства:
f(х) > 0 при х∈ ( -3 ; 1)
f(х) < 0 при х∈ ( - oo ; -3) ∪ ( 1 ; +оо )
6) Точка пересечения с осью OY ( 0; 3)
Также можно проводить исследование функции с производной.
но это уже другая тема.