Если левая и правая части уравнения являются рациональными выражениями, то такие уравнения называют рациональными.
Рациональные уравнения, в которых и левая и правая части являются целыми выражениями, называются целыми. После упрощения целого уравнения его левая часть представляет собой многочлен.
Например, 2х + 5 = 3(8 - х) - целое, х - 5/х = -3х + 19 - не является целым, оно является дробным.
Степень целого уравнения - это степень многочлена.
Степень многочлена - это степень старшего члена многочлена.
Например, у многочлена х + 5 - степень 1-я, х² + 3х -2 - степень 2-я,
х + 4х² - х³ - 3-я степень.
В решении.
Объяснение:
Выполните задания в тетради:
Постройте таблицу для построения графиков.
В одной системе координат постройте графики функций:
а) y= x²
б) y= x² - 3
в) y= 1 + x²
График квадратичной функции, парабола.
а) стандартный вариант;
Таблица:
х -4 -3 -2 -1 0 1 2 3 4
у 16 9 4 1 0 1 4 9 16
б) вершина параболы смещена по оси Оу "вниз" на 3 единицы;
Таблица:
х -4 -3 -2 -1 0 1 2 3 4
у 13 6 1 -2 -3 -2 1 6 13
в) вершина параболы смещена по оси Оу "вверх" на 1 единицу.
Таблица:
х -4 -3 -2 -1 0 1 2 3 4
у 17 10 5 2 1 2 5 10 17
Рисунок прилагается.