1) х³ + х² - 6 * х = 0
х * (х² + х - 6) = 0
х₁ = 0 х₂ = 2 х₃ = -3
2) (x² - 2x + 3)(x² - 2x + 4) = 6
пусть х² - 2*х + 3 = т. уравнение принимает вид
т * (т + 1) = 6
т² + т - 6 = 0
т₁ = -3 т₂ = 2
1) х² - 2 * х + 3 = 2
х² - 2 * х + 1 = (х - 1)² = 0
х = 1
2) х² - 2 * х + 3 = -3
х²- 2 * х + 6 = 0
корней нет (дискриминант отрицательный)
3) 6*x² + 11*x - 2 = 0 6*x - 1
уравнение 6*x² + 11*x - 2 = 0 имеет 2 корня: х₁ = -2 х₂ = 1/6
второй корень не подходит, так как в этом случае знаменатель равен нулю
х - ширина прямоугольника
х + 8 - длина прямоугольника
(х + 8) * х = 65
х² + 8х - 65 = 0
Получили квадратное уравнение, ищем корни
х первое, второе = (-8 плюс минус √64+260) / 2
х первое, второе = (-8 плюс минус √324) / 2
х первое, второе = (-8 плюс минус 18) / 2
Отрицательный корень сразу отбрасываем, так как ширина не может быть отрицательной.
х = 5 это ширина прямоугольника (b)
5+ 8 = 13 это длина прямоугольника (а)
Р(периметр прямоугольника) = 2а + 2b
Подставляем, находим периметр
Р = 2 * 13 + 2 * 5 = 36 (см)