М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nazirakmtv
nazirakmtv
27.05.2023 19:28 •  Алгебра

Решить первые 5 1 варианта​. выяснить какое из двух данных уравнений является следствием другого

👇
Открыть все ответы
Ответ:
mrmrheik
mrmrheik
27.05.2023
y= \dfrac{2.5|x|-1}{|x|-2.5x^2} = \dfrac{2.5|x|-1}{-|x|(2.5|x|-1)}=- \dfrac{1}{|x|}

Строим гиперболу y=-\dfrac{1}{x} и затем верхнюю часть графика отобразить в нижнюю(отрицательную часть)

Область определения: \displaystyle \left \{ {{|x|\ne0} \atop {2.5|x|-1\ne0}} \right. ~~~\Rightarrow~~~~ \left \{ {{x\ne 0} \atop {x\ne \pm0.4}} \right.

Подставим у=кх в упрощенную функцию.

kx=- \dfrac{1}{|x|}              (*)

Очевидно, что при k=0 уравнение   (*) решений не будет иметь.

1) Если x>0, то kx^2=-1 и это уравнение решений не имеет при k>0(так как левая часть всегда положительно).

2) Если x<0, то kx^2=1 и при k<0 это уравнение решений не имеет.

Если объединить 1) и 2) случаи, то уравнение будет иметь хотя бы один корень.

Подставим теперь x=\pm0.4, имеем

k\cdot (-0.4)=- \dfrac{1}{0.4} \\ \\ k=6.25                                         k\cdot 0.4=- \dfrac{1}{0.4} \\ \\ k=-6.25

Итак, при k=0 и k=±6.25 графики не будут иметь общих точек

Постройте график функции у=2,5|х|-1/|х|-2,5х^2 и определитель,при каких значениях k прямая у=kx не и
4,4(8 оценок)
Ответ:
hjhytu
hjhytu
27.05.2023

По определению, \left\{\underset{n\rightarrow\infty}{lim}x_n=L\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n-L\right|

Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение \left\{\underset{n\rightarrow\infty}{lim}x_n=0\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n\right|

2) x_n=\dfrac{a}{n}

|x_n|

А значит, если взять N=\left[\dfrac{|a|}{\varepsilon}\right] +1 (*), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|a|}{\varepsilon}

(*) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{|a|}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)

А это и означает, что предел данной последовательности равен 0

4)  x_n=\dfrac{2+(-1)^n}{n}

|x_n|

|2+(-1)^n|=\left\{\begin{array}{c}2-1=1,n=2k-1,k\in N \\2+1=3,n=2k,k\in N \end{array}\right. \Rightarrow |2+(-1)^n|\leq 3\; \forall n\in N

А значит, если взять N=\left[\dfrac{3}{\varepsilon}\right] +1 (**), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|

(**) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{3}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)

А это и означает, что предел данной последовательности равен 0

___________________________

2) a=1. Тогда x_1=\dfrac{1}{1}=1; x_2=\dfrac{1}{2}; x_3=\dfrac{1}{3}; x_4=\dfrac{1}{4}; x_5=\dfrac{1}{5}; x_6=\dfrac{1}{6}

4)

x_1=\dfrac{2+(-1)^1}{1}=1;\;x_2=\dfrac{2+(-1)^2}{2}=1\dfrac{1}{2};\;x_3=\dfrac{2+(-1)^3}{3}=\dfrac{1}{3};\;x_4=\dfrac{2+(-1)^4}{4}=\dfrac{3}{4};\;x_5=\dfrac{2+(-1)^5}{5}=\dfrac{1}{5};\;x_6=\dfrac{2+(-1)^6}{6}=\dfrac{1}{2}.

___________________________

Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 0\leq \{x\}


пример 2 и 4. Все теоремы и аксиомы, будьте добры, распишите. Действий, пусть и банальных, легких не
4,6(34 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ