1 Данная задача решается аналитически, поэтому можно вовсе не рисовать графики прямой и параболы. Часто это дает большой плюс в решении примера, так как в задаче могут быть даны такие функции, что их проще и быстрее не нарисовать. 2 Согласно учебникам по алгебре парабола задается функцией вида f(x)=ax^2+bx+c, где a,b,c – это вещественные числа, притом коэффициент a отличен он нуля. Функция g(x)=kx+h, где k,h – это вещественные числа, определяет прямую на плоскости. 3 Точка пересечения прямой и параболы – это общая точка обеих кривых, поэтому в ней функции примут одинаковые значение, то есть f(x)=g(x). Данное утверждение позволяет записать уравнение: ax^2+bx+c=kx+h, которое даст возможность найти множество точек пересечения. 4 В уравнении ax^2+bx+c=kx+h необходимо перенести все слагаемые в левую часть и привести подобные: ax^2+(b-k)x+c-h=0. Теперь остается решить полученное квадратноеуравнение. 5 Все найденные "иксы" – это еще не ответ на задачу, так как точку на плоскости характеризуют два вещественных числа (x,y). Для полного завершения решения необходимо вычислить соответствующие "игрики". Для этого нужно подставить "иксы" либо в функцию f(x), либо в функцию g(x), ведь для точки пересечения верно: y=f(x)=g(x). После этого вы найдете все общие точки параболы и прямой. 6 Для закрепления материала очень важно рассмотреть решение на примере. Пусть парабола задается функцией f(x)=x^2-3x+3, а прямая – g(x)=2x-3. Составьте уравнение f(x)=g(x), то есть x^2-3x+3=2x-3. Перенося все слагаемые в левую часть, и приводя подобные, получите: x^2-5x+6=0. Корни данного квадратного уравнения: x1=2, x2=3. Теперь найдите соответствующие "игрики": y1=g(x1)=1, y2=g(x2)=3. Таким образом, найдены все точки пересечения: (2,1) и (3,3).
{a1+ a6=11 a2+a4=10 Выразим а2, а4 , а6 через первый член арифметической прогрессии и разность прогрессии (d) a2=a1+d a4=a1+3d a6=a1+5d и подставим в систему: {a1+a1+5d=11 a1+d+a1+3d=10 {2a1+5d=11 2a1+4d=10 Решим систему методом сложения. Умножим первое уравнение на (-1) и сложим со вторым: {-2a1-5d=-11 + 2a1+4d=10 -d=-1 d=1 2a1+4=10 a1=3 (подставили найденное значение d во второе уравнение системы и нашли первый член прогрессии.) По формуле суммы n-первых членов прогрессии найдём сумму первых шести членов этой прогрессии: S6=(2·3+5 )\2·6=33 (Sn=(2a1+d(n-1))\2·n) ответ:33