tgx=ctgx
tgx=1/tgx
tg^2(x)=1 =>tgx=1=> x=arctg 1+Пn,n принадлежит => x= п/4+пn,n принадлежит Z
S={п/4+пn|n принадлежит Z}
3cos2x+sin^2(x)+5sinxcosx=0
3cos2x+sin^2(x)+5sinxcosx=0
3(2cos^2(x)-1)+sin^2(x)+5sinxcosx=0
6cos^2(x)-3sin^2(x)-3cos^2(x)+sin^2(x)+5sinxcosx=0|:cos^2(x) неравный 0
6-3tg^2(x)-3+tg^2(x)+5tgx=0
Пусть t=tgx,тогда
2t^2-5t-3=0
D=25-4*2*(-3)=25+24=49
t=(5-7)/4 t=-1/2 tgx=-1/2 x=-arctg1/2+Пn,n принадлежит Z
или или или или
t=(5+7)/4 t=3 tgx=3 x=arctg3+Пk,k принадлежит Z
Найдем производную данной функции
и приравняем ее к нулю
_____+____(2)____-____(4)_____+____
На промежутке x ∈ (-∞;2) и x ∈ (4;+∞) функция возрастает, а убывает на промежутке x ∈ (2;4). В точке x = 2 функция имеет относительный максимум, а в точке x = 4 - относительный минимум.
Найдем вторую производную данной функции
_____-_____(3)____+_____
На промежутке x ∈ (-∞ ;3) функция выпукла вверх, а на промежутке x ∈ (3; +∞) - выпукла вниз