Пусть х – число этажей, у – квартир, z –подъездов. х*y*z=231 Разложим число 231 на множители: 3*7*11=231 По условиям задачи количество квартир на каждом этаже больше 2, но меньше 7, т.е. 2> у <7 Отсюда видно, что число квартир равное 7 или 11 не подходит, т.к. не будет выполняться неравенство. Неравенство выполняется, если количество квартир на этаже равно 3: 2> 3 <7 (Значит 7 и 11 квартир быть не может). Количество квартир у =3
Пусть число этажей z=7 (11 подъездов), тогда количество квартир в подъезде составляет 3*7=21 первый подъезд имеет счет квартир: с 1 по 21 второй подъезд: с 22 по 42 Не подходит, т.к. не выполняется условие задачи: во втором подъезде есть квартира номер которой больше 42. Если число этажей 7, а число квартир 3, тогда максимальный номер квартиры во втором подъезде 42.
Возьмем количество этажей равным z=11, тогда количество квартир в подъезде 11*3=33 1 подъезд: с 1 по 33 номер 2 подъезд: с 34 по 66 номер (больше 42). Выполнены все условия задачи. Значит, в доме 11 этажей, 7 подъездов и 3 квартиры на каждом этаже. ответ: 11 этажей.
Знайти проміжки зростання і спадання функції. y = (1/4)*(x^4)-(1/3)*(x^3)-3*(x^2)+2 Решение 1. Находим интервалы возрастания и убывания. Первая производная. f'(x) = x³ - x² - 6x или f'(x) = x(x² - x - 6) Находим нули функции. Для этого приравниваем производную к нулю x(x² - x - 6) = 0 Откуда: x₁ = - 2 x₂ = 0 x₃ = 3 (-∞ ;-2) f'(x) < 0 функция убывает (-2; 0) f'(x) < 0 функция возрастает (0; 3) f'(x) > 0 функция убывает (3; +∞) f'(x) < 0 f'(x) > 0 функция возрастает В окрестности точки x = -2 производная функции меняет знак с (-) на (+). Следовательно, точка x = -2 - точка минимума. В окрестности точки x = 0 производная функции меняет знак с (+) на (-). Следовательно, точка x = 0 - точка максимума. В окрестности точки x = 3 производная функции меняет знак с (-) на (+). Следовательно, точка x = 3 - точка минимума.