Ноль появляется каждый раз, когда встречается пара 2*5, то есть когда умножается чётное число на число кратное 5.Среди натуральных чисел от 1 до 2015 чётных чисел намного больше, чем кратных 5, так что достаточно сосчитать пятёрки, а уж на каждую пятёрку найдётся своя двойка. 1) 2015 = 5·403. То есть 403 числа делятся на 5. 2) Числа, кратные 25 (25, 50, 75, 100 и т.д.), дадут нам по две пятёрки (25=5*5). Таких чисел 80, потому что 2015 = 25·80+15. То есть общее количество пятёрок увеличится на 80. 3) Числа, кратные 125 (125, 250, 375, 500 и т.д.), дадут нам по три пятёрки (125=5*5*5). Таких чисел 16, потому что 2015 = 125·16+15. Не забудем добавить ещё 16 пятёрок. 4) Числа, кратные 625 (625, 1250 и 1875), дадут нам по 4 пятёрки (625=5*5*5*5). Таких чисел только 3 (четвёртое уже больше, чем 2015), поэтому добавим ещё 3 пятёрки.
Всего имеем: 403+80+16+3 = 502 пятёрки, и это значит, что факториал 2015! оканчивается 502 нулями.
Пусть собственная скорость катера v км/ч, а скорость течения х км/ч Тогда по течению катер плыл со скоростью, больше собственной на скорость течения реки и проплыл 3•(v+x) Против течения катер плыл со скоростью, меньшей на скорость течения реки и проплыл 5•(v-x), а всего по течению и против – 92 км Составим уравнение: 3•(v+x) + 5•(v-x)=92 ⇒ 8v-2x=92 (1) Известно, что 5•(v+x) - 6•(v-x)=10 ⇒ -v+11x=10 (2) Составим систему из уравнений 1 и 2:
Домножим обе части второго уравнения на 8 и получим:
Сложив уравнения, получим 86x=192 ⇒ x=2
Из уравнения 8v - 2x=92 находим скорость течения реки=2 км/ч ⇒ 8v - 4=92 ; 8v=96 ⇒ v=12 км/ч - это скорость катера.
1) 2015 = 5·403. То есть 403 числа делятся на 5.
2) Числа, кратные 25 (25, 50, 75, 100 и т.д.), дадут нам по две пятёрки (25=5*5). Таких чисел 80, потому что 2015 = 25·80+15. То есть общее количество пятёрок увеличится на 80.
3) Числа, кратные 125 (125, 250, 375, 500 и т.д.), дадут нам по три пятёрки (125=5*5*5). Таких чисел 16, потому что 2015 = 125·16+15. Не забудем добавить ещё 16 пятёрок.
4) Числа, кратные 625 (625, 1250 и 1875), дадут нам по 4 пятёрки (625=5*5*5*5). Таких чисел только 3 (четвёртое уже больше, чем 2015), поэтому добавим ещё 3 пятёрки.
Всего имеем: 403+80+16+3 = 502 пятёрки, и это значит, что факториал 2015! оканчивается 502 нулями.
ответ: 502 нулями.