Хлебные зерновые культуры вместе с зернобобовыми составляют группу зерновых культур. Большинство хлебных культур относятся к семейству злаковых. Не относящиеся к злакам растения (например, гречиха) могут рассматриваться как псевдозерновые (англ. Pseudocereal) или злакоподобные. Часть хлебных зерновых культур, как злаковых, так и прочих, а также часть зернобобовых культур, зерно которых как правило используется для производства крупы, относят к крупяным культурам.
Хлебные культуры культивируются на всех континентах, кроме Антарктиды. Из них производят муку, кондитерские изделия, корма; применяют в приготовлении напитков, получении спирта. Наиболее распространены посевы пшеницы, риса, ячменя, кукурузы, ржи, овса, проса.
Объяснение:
Молекула ДНК была открыта И. Мишером (Швейцария, 1869) в клеточных ядрах. Позднее было установлено, что ДНК составляет основу хромосом ядра.
В 1943 году О. Т. Эвери, К. МакЛеод, М.МакКарти обнаружили, что ДНК, выделенная из вирулентного штамма бактерии Streptomyces pneumo-пше, переводила невирулентный штамм этой бактерии в вирулентную форму. Значит, ДНК, выделенная из вирулентного штамма, несет наследуемую генетическую информацию, дающую признак вирулентности; эта информация включается в ДНК невирулентных клеток реципиента.
Тщательный анализ ДНК самых различных организмов показал, что количественное соотношение отдельных оснований в молекуле ДНК варьирует в широких пределах, но при этом всегда сохраняется соотношение 1 : 1 между А и Г, с одной стороны, и Г и Ц - с другой.
Обобщив результаты многочисленных исследований молекул нуклеиновых кислот, Э.Чаргафф сформулировал следующие правила:
1) препараты ДНК, полученные из разных тканей одного и того же вида, имеют одинаковый нуклеотидный состав;
2) нуклеотидный состав у разных видов неодинаков;
3) нуклеотидный состав ДНК у данного конкретного вида не меняется с возрастом организма;
4) число адениновых остатков в любой молекуле ДНК независимо от видовой принадлежности организма равно числу тиминовых остатков, а число гуаниновых остатков равно числу цитозиновых остатков.
Молекула ДНК, согласно модели Дж.Уотсона и Ф.Крика (Великобритания, 1953), представляет собой две полимерные цепочки, закрученные одна вокруг другой в виде спирали. Модель состоит из двух цепей ДНК, закрученных в спираль вправо вокруг одной оси с образованием двойной спирали
Оказалось, что две противоположно направленные (антипараллельные) (их 5'и 3'-межнуклеотидные мостики направлены в противоположные стороны) цепи ДНК спирально переплетаются; они удерживаются между собой азотистыми основаниями А―Т и Г—Ц. При этом пуриновые основания связаны слабыми водородными связями с пиримидиновыми основаниями. Этими же связями удерживаются вместе две цепи всей молекулы.
Аденин всегда связан с тимином (А + Т), а гуанин с цитозином (Г+Ц). Эти пары азотистых оснований, дополнительны (комплементарны) по отношению друг к другу. Дополнительны и обе цепочки молекул ДНК. Схематически молекула ДНК может быть изображена в виде винтовой лестницы, ступени которой — это пары азотистых оснований, а боковые стороны — молекулы дезоксирибозы и фосфорной кислоты.
Расстояние между нуклеотидами 3,4 А, диаметр двойной спирали равен 20 А.
Один полный оборот спирали включает 10 нуклеотидов и занимает расстояние 34 А.
Молекула ДНК на всем протяжении состоит из параллельных нитей и имеет поперечник, равный 20А. Это возможно только благодаря тому, что пуриновые основания, имеющие длину кольца 12 А, соединяются с пиримидиновыми основаниями с длиной кольца 8 А.
С модели Уотсона — Крика удалось объяснить многие важные биологические свойства ДНК, эта модель общепризнанна.
Одно из важнейших свойств ДНК — это ее к самоудвоению (репликации). В течение двух клеточных поколений ДНК хромосом Еscherichia coli метили радиоактивным изотопом водорода — тритием (3Н-тимидином). На полученных радиоавтографах были видны нити ДНК в момент раскручивания (V-образная форма) и образование новых двойных цепей.
Убедительные доказательства самокопирования ДНК были также получены в опытах с выращиванием бактерий в среде, содержащей тяжелый азот (15N). В азотистых основаниях ДНК таких бактерий через некоторое время обычный азот 14N был полностью заменен изотопом 15N. Тогда бактерии, содержащие тяжелую ДНК, переносили в среду с 14N, где они некоторое время росли. Очевидно, на этой среде вновь синтезированная ДНК бактерий должна содержать обычный азот 14N и быть легкой. Исходя из гипотезы Уотсона — Крика о репликации ДНК путем разделения цепей, можно было предполагать, что плотность молекулы ДНК в различных генерациях бактерий будет неодинаковой.
В первом поколении потомство перенесенных бактерий должно иметь ДНК средней плотности, так как ее молекулы «гибридные»: они состоят из одной тяжелой и одной легкой цепей. ДНК, выделенная из бактерий второго поколения, должна представлять собой смесь молекул двух плотностей. Та половина ДНК, которая составлена из двух легких цепей, должна иметь нормальную плотность, а та, в состав которой вошла одна тяжелая и одна легкая цепь, должна быть полутяжелой.
ДНК из бактерий второго поколения была путем центрифугирования разделена на две фракции: одна из них в сравнении с тяжелой родительской действительно оказалась легкой, вторая — полутяжелой.
Таким образом, поведение ДНК в точности соответствовало предсказаниям, сделанным на основе гипотезы Уотсона — Крика.