Водная это жабры чтобы дышать, чешуя, пузырь чтобы рыба в воде не превертывалась пузом вверх.
Первоначально жизнедеятельность существ была связана с водой. Особенности ее заключаются в солености, течении, пище, кислороде, давлении, свете и содействуют систематизированию организмов. Загрязнение водоемов очень плохо отражается на живых созданиях. Например, из-за уменьшения уровня воды в Аральском море пропала большая часть представителей флоры и фауны, в особенности рыбы. В водных просторах обитает огромное многообразие живых организмов. Из воды они добывают все необходимое, что требуется для осуществления жизнедеятельности, а именно питание, воду и газы. По этой причине все многообразие водных живых существ должно адаптироваться к основным особенностям существования, которые формируются химическими и физическими свойствами воды. Солевой состав среды также имеет большое значение для водных обитателей.
Умение парить обеспечивается физическими особенностями воды, то есть силой выталкивания, а также особыми механизмами самих существ. К примеру, множественные придатки, которые существенно увеличивают поверхность туловища живого организма по сравнению с его массой, усиливают трение о воду. Следующий пример жителей водной среды обитания – это медузы. Их умение держаться в толстом слое воды обуславливается необычной формой туловища, которое похоже на парашют. К тому же плотность воды очень сходна с плотностью тела медузы.
Ферментативное расщепление сложных органических веществ до простых в пищеварительной системе:
белковые молекулы - аминокислот.
липиды - глицерина и жирных кислот.
углеводы - глюкозы.
Вся высвобождающаяся при этом энергия рассеивается в виде тепла.
Простые вещества всасываются ворсинками тонкого кишечника и переносятся к клеткам тканей организма:
аминокислоты и глюкоза - в кровь.
жирные кислоты и глицерин - в лимфу.
На подготовительном этапе может происходить гидролиз запасные вещества клеток: гликогена — у животных (и грибов) и крахмала — у растений. Гликоген и крахмал являются полисахаридами и распадаются на мономеры — молекулы глюкозы.
Гликолиз (анаэробный этап).
Гликолиз — расщепление глюкозы с ферментов.
Идет в цитоплазме, без кислорода.
Во время этого процесса происходит дегидрирование глюкозы, акцептором водорода служит кофермент НАД+ ().
Глюкоза в результате цепочки ферментативных реакций превращается в две молекулы пировиноградной кислоты (ПВК), при этом суммарно образуются 2 молекулы АТФ и восстановленная форма переносчика водорода НАД·Н2:
С6Н12О6 + 2АДФ + 2Н3РО4 + 2НАД+ -> 2С3Н4О3 + 2АТФ + 2Н2О + 2(НАДН+Н+).
если кислорода нет, у дрожжей и растений происходит спиртовое брожение, при котором сначала происходит образование уксусного альдегида, а затем этилового спирта:
С3Н4О3 -> СО2 + СН3СОН,
СН3СОН + НАДН+Н+ -> С2Н5ОН + НАД+.
В результате гликолиза одной молекулы глюкозы высвобождается 200 кДж, из которых 120 кДж рассеивается в виде тепла, а 80кДж запасается в связях 2 молекулы АТФ.
Дыхание (аэробный этап)
Окислительное фосфолирование — процесс синтеза АТФ с участием кислорода.
Идёт на мембранах крист митохондрий в присутствии кислорода.
Пировиноградная кислота, образовавшаяся при бескислородном расщеплении глюкозы, окисляется до конечных продуктов СО2 и Н2О. Этот многоступенчатый ферментативный процесс называется циклом Крепсом, или циклом трикарбоновых кислот.
В результате клеточного дыхания при распаде двух молекул пировиноградной кислоты синтезируются 36 молекул АТФ:
2С3Н4О3 + 32О2 + 36АДФ + 36Н3РО4 -> 6СО2 + 58Н2О + 36АТФ.
Кроме того, нужно помнить, что две молекулы АТФ запасаются в ходе бескислородного расщепления каждой молекулы глюкозы.
Суммарная реакция расщепления глюкозы до углекислого газа и воды выглядит следующим образом:
С6Н12О6 + 6О2 + 38АДФ -> 6СО2 + 6Н2О + 38АТФ + Qт,
где Qт — тепловая энергия.
Таким образом при окислительном фосфорилировании образуется в 18 раз больше энергии (36 АТФ), чем при гликолизе (2 АТФ).
Гликолиз используют некоторые бактерии и паразиты, обитающие в анаэробных условиях.