Мир эукариотных растений отнюдь не ограничивается красными и зелеными водорослями. В современной биосфере процветают различные группы организмов с золотисто-бурыми хлоропластами. Одноклеточные и колониальные диатомовые водоросли, клетки которых защищены кремнеземным панцирем, господствуют в Мировом океане, населяют пресные воды и влажную почву. Прибрежная зона моря заселена бурыми водорослями - фукусами, ламинариями и саргассами (последние могут выживать и в открытом океане - вспомните Саргассово море). Среди бурых водорослей встречаются настоящие гиганты. Например, у тихоокеанского побережья Южной Америки обитает самый крупный растительный организм планеты - макроцистис, достигающий 150 м в длину. В планктоне морских и пресных вод распространены фотосинтезирующие жгутиконосцы - золотистые водоросли и криптомонады.
Хлоропласты золотистых, диатомовых и бурых водорослей содержат хлорофиллы "а" и "с" и почему-то окружены 4 мембранами. Их происхождение понять строение криптомонад - небольшой группы жгутиконосцев, хлоропласты которых тоже имеют хлорофиллы "а" и "с", окружены 4 мембранами, причем между второй и третьей имеется маленькое эукариотное ядро - нуклеоморф, а внутри пространства, ограниченного последней, четвертой мембраной находится кольцевая ДНК. Такое строение позволяет предполагать, что хлоропласты криптомонад возникли в результате двойного симбиоза. Сначала некий хищный протист приобрел в качестве симбионта золотистую бактерию с хлорофиллами "а" и "с", а потом сам стал симбионтом криптомонады. В хлоропластах бурых, диатомовых и золотистых водорослей нуклеоморфа уже нет, хотя они по-прежнему окружены 4 мебранами, что говорит о более глубокой интеграции симбионта и хозяина.
Хлоропласты приобретены различными группами эукариотных растений независимо друг от друга, и предками хлоропластов были разные свободноживущие организмы: в одних случаях ими были бактерии (зеленые или сине-зеленые), а в других - эукариотные простейшие.
Вместо заключения
Эукариотные организмы - простейшие, различные группы растений, грибы и многоклеточные животные - доминируют в современной биосфере. Однако все они несут в своих клетках симбионтов - потомков древних свободноживущих бактерий. Только благодаря им эукариотные организмы жить в кислородной атмосфере и использовать энергию солнечного света для синтеза органических веществ. Так может быть, на самом деле эукариоты вовсе не доминируют в биосфере, а им это только кажется? Сторонник теории симбиогенеза американский биолог Л. Томас как-то сказал: "Обычно на митохондрии смотрят как на порабощенные существа, взятые в плен, чтобы снабжать АТФ клетки, и не дышать самостоятельно. С этой рабовладельческой точки зрения смотрят на дело и солидные биологи, которые сами - все эукариоты. Но с точки зрения самих митохондрий они - существа, которые давным-давно нашли для себя лучшее из возможных пристанищ, где можно жить, затрачивая минимум усилий и подвергаясь наименьшему риску".
Мы не должны забывать, что в каждой клеточке нашего тела живут крошечные потомки древних оксифильных бактерий, которые прокрались в организм наших далеких предков 2 млрд. лет назад и продолжают существовать в нас, сохраняя собственные гены и свою особую биохимию. Другая цитата Л. Томаса: "Вот они движутся в моей цитоплазме, дышат для нужд моего тела, но они - чужие. Мне жаль, что я не могу познакомиться с моими митохондриями поближе. Когда я сосредоточусь, я могу представить, что ощущаю их; не то чтобы я чувствовал, как они извиваются, но время от времени я воспринимаю какой-то трепет. Я не могу отделаться от мысли, что если бы я знал больше о том, как они достигают такой гармонии, я бы по-другому понимал музыку".
Учерепі ссавців добре розвинений мозковий відділ, що пов'язано зі збільшенням розмірів головного мозку. у всіх ссавців розвинені кістки піднебіння, які відокремлюють носову порожнину від ротової. як і у плазунів, хребет ссавців поділяється на шийний, грудний, поперековий, крижовий і хвостовий відділи. лише у шийному відділі кількість хребців зазвичай стала й дорівнює семи. у тварин з довгою шиєю, зокрема в жирафів, та у тих, що мають коротку шию (наприклад, кротів), кількість шийних хребців однакова, різна лише їхня довжина. лише в окремих представників класу (як-от, у лінивців) їх може бути від 6 до 10. в інших відділах хребта у різних видів ссавців кількість хребців може варіювати.
Вывод должен быть таким: сходство объясняется тем, что оба растения ( указываете растение,если сравнивали животных,то соответственно животных) относятся к одному роду. Различия объясняются тем, что они относятся к разным видам. Морфологический критерий для определения вида нельзя считать абсолютным, так как внутри вида может существовать различие между особями разного пола, например, самка и самец саранчи или самка и самец аскариды.У растений таким примером могут служить весенние и летние побеги хвоща полевого, которые имеют разных внешний вид в зависимости от сезонов года.
Мир эукариотных растений отнюдь не ограничивается красными и зелеными водорослями. В современной биосфере процветают различные группы организмов с золотисто-бурыми хлоропластами. Одноклеточные и колониальные диатомовые водоросли, клетки которых защищены кремнеземным панцирем, господствуют в Мировом океане, населяют пресные воды и влажную почву. Прибрежная зона моря заселена бурыми водорослями - фукусами, ламинариями и саргассами (последние могут выживать и в открытом океане - вспомните Саргассово море). Среди бурых водорослей встречаются настоящие гиганты. Например, у тихоокеанского побережья Южной Америки обитает самый крупный растительный организм планеты - макроцистис, достигающий 150 м в длину. В планктоне морских и пресных вод распространены фотосинтезирующие жгутиконосцы - золотистые водоросли и криптомонады.
Хлоропласты золотистых, диатомовых и бурых водорослей содержат хлорофиллы "а" и "с" и почему-то окружены 4 мембранами. Их происхождение понять строение криптомонад - небольшой группы жгутиконосцев, хлоропласты которых тоже имеют хлорофиллы "а" и "с", окружены 4 мембранами, причем между второй и третьей имеется маленькое эукариотное ядро - нуклеоморф, а внутри пространства, ограниченного последней, четвертой мембраной находится кольцевая ДНК. Такое строение позволяет предполагать, что хлоропласты криптомонад возникли в результате двойного симбиоза. Сначала некий хищный протист приобрел в качестве симбионта золотистую бактерию с хлорофиллами "а" и "с", а потом сам стал симбионтом криптомонады. В хлоропластах бурых, диатомовых и золотистых водорослей нуклеоморфа уже нет, хотя они по-прежнему окружены 4 мебранами, что говорит о более глубокой интеграции симбионта и хозяина.
Хлоропласты приобретены различными группами эукариотных растений независимо друг от друга, и предками хлоропластов были разные свободноживущие организмы: в одних случаях ими были бактерии (зеленые или сине-зеленые), а в других - эукариотные простейшие.
Вместо заключения
Эукариотные организмы - простейшие, различные группы растений, грибы и многоклеточные животные - доминируют в современной биосфере. Однако все они несут в своих клетках симбионтов - потомков древних свободноживущих бактерий. Только благодаря им эукариотные организмы жить в кислородной атмосфере и использовать энергию солнечного света для синтеза органических веществ. Так может быть, на самом деле эукариоты вовсе не доминируют в биосфере, а им это только кажется? Сторонник теории симбиогенеза американский биолог Л. Томас как-то сказал: "Обычно на митохондрии смотрят как на порабощенные существа, взятые в плен, чтобы снабжать АТФ клетки, и не дышать самостоятельно. С этой рабовладельческой точки зрения смотрят на дело и солидные биологи, которые сами - все эукариоты. Но с точки зрения самих митохондрий они - существа, которые давным-давно нашли для себя лучшее из возможных пристанищ, где можно жить, затрачивая минимум усилий и подвергаясь наименьшему риску".
Мы не должны забывать, что в каждой клеточке нашего тела живут крошечные потомки древних оксифильных бактерий, которые прокрались в организм наших далеких предков 2 млрд. лет назад и продолжают существовать в нас, сохраняя собственные гены и свою особую биохимию. Другая цитата Л. Томаса: "Вот они движутся в моей цитоплазме, дышат для нужд моего тела, но они - чужие. Мне жаль, что я не могу познакомиться с моими митохондриями поближе. Когда я сосредоточусь, я могу представить, что ощущаю их; не то чтобы я чувствовал, как они извиваются, но время от времени я воспринимаю какой-то трепет. Я не могу отделаться от мысли, что если бы я знал больше о том, как они достигают такой гармонии, я бы по-другому понимал музыку".