Органічні сполуки складають близько 20—30 % маси живих клітин. До них відносяться біологічні полімери — білки, нуклеїнові кислоти і полісахариди, а також жири, гормони, пігменти, АТФ тощо.
Білки складають 10—18% від загальної маси клітини (50— 80% від сухої маси). Молекулярна маса білків коливається від десятків тисяч до багатьох мільйонів одиниць. Білки — це біополімери, мономерами яких є амінокислоти. Усі білки живих організмів побудовані з 20 амінокислот. Не дивлячись на це, різноманітність білкових молекул величезна. Вони розрізняються за величиною, структурою і функціями, які визначаються кількістю і порядком розташування амінокислот. Крім простих білків (альбуміни, глобуліни, гістони) є і складні, які являють собою з'єднання білків з вуглеводами (глікопротеїди), жирами (ліпопротеїди) і нуклеїновими кислотами (нуклеопротеїди).
Кожна амінокислота складається з вуглеводневого радикала, сполученого з карбоксильною групою, що має кислотні властивості (-СООН), й аміногрупою (-NH2), яка має основні властивості. Амінокислоти відрізняються одна від одної тільки радикалами. Амінокислоти є амфотерними сполуками, які мають одночасно властивості й кислот, й основ. Це явище обумовлює можливість з'єднання кислот у довгі ланцюжки. При цьому встановлюються міцні ковалентні (пептидні) зв'язки між вуглецем кислотної і азотом основної груп (-CO-NH-) з виділенням молекули води. З'єднання, що складаються з двох амінокислотних залишків, називаються дипептидами, з трьох — трипептидами, з багатьох — поліпептидами.
Білки живих організмів складаються з сотень і тисяч амінокислот, тобто є макромолекулами. Різні властивості та функції білкових молекул визначаються послідовністю з'єднання амінокислот, яка закодована в ДНК. Цю послідовність називають первинною структурою молекули білка, від якої, у свою чергу, залежать подальші рівні просторової організації і біологічні властивості білків. Первинна структура білкової молекули зумовлена пептидними зв'язками.
Повторна структура білкової молекули досягається її спіралізацією, завдяки встановленню між атомами сусідніх витків спіралі водневих зв'язків. Вони слабкіше ковалентних, але, багато разів повторені, створюють досить міцну сполуку. Функціонування у вигляді закрученої спіралі характерне для деяких фібрилярних білків (колаген, фібриноген, міозин, актин тощо).
Більшість білкових молекул стають функціонально активними тільки після набуття глобулярної (третинної) структури. Вона формується шляхом багатократного згортання спіралі в тривимірне утворення — глобулу. Ця структура зшивається, як правило, ще більш слабкими дисульфідними (-S-S-) зв'язками. Глобулярну структуру має більшість білків (альбуміни, глобуліни тощо).
Для виконання деяких функцій потрібна участь білків з більш високим рівнем організації, при якому виникає об'єднання декількох глобулярних білкових молекул в єдину систему — четвертичну структуру (хімічні зв'язки можуть бути різні). Наприклад, молекула гемоглобіну складається з чотирьох різних глобул і гемінової групи, що містить іон заліза.
Втрата білковою молекулою своєї структурної організації називається денатурацією. Причиною її можуть бути різні хімічні (кислоти, луги, спирт, солі важких металів тощо) і фізичні (високі температура і тиск, іонізуюче випромінювання тощо) чинники. Спочатку руйнується дуже слабка — четвертична, потім третинна, вторинна, а за більш жорстких умов і первинна структура. Якщо під дією денатуруючого чинника не зачіпається первинна структура, то при поверненні білкових молекул у нормальні умови середовища їх структура повністю відновлюється, тобто відбувається ренатурація. Ця властивість білкових молекул широко використовується в медицині для приготування вакцин і сироваток і в харчовій промисловості для отримання харчових концентратів. При необоротній денатурації (руйнуванні первинної структури) білки втрачають свої властивості.
Білки виконують наступні функції: будівельну, каталітичну, транспортну, рухову, захисну, сигнальну, регуляторну й енергетичну.
Як будівельний матеріал білки входять до складу всіх клітинних мембран, гіалоплазми, органоїдів, ядерного соку, хромосом і ядерець.
Каталітичну (ферментативну) функцію виконують білки — ферменти, у десятки і сотні тисяч разів прискорюючи перебіг біохімічних реакцій у клітинах при нормальному тиску і температурі близько 37 °С. Кожний фермент може каталізувати тільки одну реакцію, тобто дія ферментів строго специфічна. Специфічність ферментів зумовлена наявністю одного або декількох активних центрів, в яких відбувається тісний контакт між молекулами ферменту і специфічної речовини (субстрату). Деякі ферменти застосовуються в медичній практиці і харчовій промисловості.
Транспортна функція білків полягає в перенесенні речовин, наприклад кисню (гемоглобін) і деяких біологічно активних речовин (гормонів).
Простая структура популяции, когда в популяции особо одного возраста, все однолетние растения весной находятся в проростках, затем примерно одновременно зацветают, дают семена и к осени отмирают. Среди животных также есть виды с однородными по возрасту популяциями, например, многие виды саранчи весной представлены личинками, ранним летом — бескрылыми неполовозрелыми особями, затем — крылатыми формами, а глубокой осенью — только яйцами, запрятанными в почве в кубышки) . Сложная возрастная структура популяций возникает тогда, когда в ней представлены все возрастные группы, одновременно живут несколько поколений, взрослые особи размножаются многократно и имеют достаточно большую продолжительность жизни. В стадах слонов или обезьян-павианов, например, есть и новорожденные, и подростки, и молодые крепнущие животные, и размножающиеся самки, и самцы, и старые особи. Такие популяции не подвержены резким колебаниям численности. Критические внешние условия могут изменить их возрастной состав за счет гибели наиболее слабых, но самые устойчивые возрастные группы выживают и затем восстанавливают структуру популяции.
Бесполое размножение водорослей происходит с спор или зооспор (спор со жгутиками). Для некоторых водорослей, например хлореллы, характерно только бесполое размножение.
Объяснение:
Для некоторых одноклеточных водорослей, например, хлореллы, характерно только бесполое размножение. Обычно же водоросли размножаются как бесполым, так и половым путём полового размножения у водорослей очень разнообразны. Рассмотрим размножение одноклеточных водорослей на примере хламидомонады. При благоприятных условиях хламидомонада размножается бесполым Перед делением она перестаёт двигаться и теряет жгутики. В материнской клетке в результате деления образуются \(2\), \(4\) или \(8\) подвижных клеток — зооспор.