Консуме́нты (от лат. consume — употреблять) — гетеротрофы, организмы, потребляющие готовые органические вещества, создаваемые автотрофами (продуцентами). В отличие от редуцентов, консументы не разлагать органические вещества до неорганических[1].
Волк является консументом одновременно 2-го, 3-го и 4-го порядка
К консументам относят животных, некоторые микроорганизмы, а также паразитические и насекомоядные растения. Классифицируют консументов первого, второго и других порядков, так как на каждом этапе передачи вещества и энергии в трофической цепи теряется до 90 %, экологические пирамиды редко состоят из более чем четырёх порядков консументов.
Консументы первого порядка (первичные консументы) — растительноядные гетеротрофы (травоядные животные, паразитические растения), питаются непосредственно продуцентами биомассы[2].
Консументы второго порядка — хищные гетеротрофы (хищники), питаются консументами первого порядка[2].
Отдельно взятый организм может являться в разных трофических цепях консументом разных порядков, например, сова, поедающая мышь, является одновременно консументом второго и третьего порядков, а мышь — первого и второго, так как мышь питается и растениями, и растительноядными насекомыми.
Любой консумент является гетеротрофом, так как не синтезировать органические вещества из неорганических. Термин «консумент (первого, второго и так далее) порядка» позволяет более точно указать место организма в цепи питания. Редуценты (например, грибы, бактерии гниения) также являются гетеротрофами, от консументов их отличает полностью разлагать органические вещества (белки, углеводы, липиды и другие) до неорганических (углекислый газ, аммиак, мочевина, сероводород), завершая круговорот веществ в природе, создавая субстрат для деятельности продуцентов (автотрофов).
Объяснение:
Нуклеиновые кислоты были открыты в 1868 году швейцарским ученым Иоганном Фридрихом Мишером, который назвал эти вещества «нуклеин», поскольку они были обнаружены в ядре (лат. nucleus). Позже было обнаружено, что бактериальные клетки, в которых нет ядра, тоже содержат нуклеиновые кислоты.
Значение РНК в синтезе белков было предположено в 1939 году в работе Торберна Оскара Касперссона, Жана Брачета и Джека Шульца. Джерард Маирбакс выделил первую матричную РНК, кодирующую гемоглобин кролика и показал, что при ее введении в ооциты образуется тот же самый белок.
В Советском Союзе в 1956-57 годах проводились работы (А. Белозерский, А. Спирин, Э. Волкин, Ф. Астрахан) по определению состава РНК клеток, которые привели к выводу, что основную массу РНК в клетке составляют рибосомные РНК.
В 1959 году Северо Очоа получил Нобелевскую премию по медицине за открытие механизма синтеза РНК. Последовательность из 77 нуклеотидов одной из тРНК дрожжей S. cerevisiae была определена в 1965 году в лаборатории Роберта Холле, за что в 1968 году он получил Нобелевскую премию по медицине.
В 1967 Карл Везе предположил, что РНК имеют каталитические свойства. Он выдвинул так называемую Гипотезу РНК-мира, в котором РНК прото-организмов служили и как молекулы хранения информации (сейчас эта роль выполняется ДНК) и как молекулы, которые катализировали метаболические реакции (сейчас это делают ферменты).
В 1976 Уолтер Фаерс и его группа из Гентского университета (Голландия) впервые определили последовательность генома РНК - содержащегося в вирусе, бактериофага MS2.
В начале 1990-х было обнаружено, что введение чужеродных генов в геном растений приводит к подавлению выражения аналогичных генов растения. Примерно в это же время было показано, что РНК длиной около 22 оснований, которые сейчас называются микро-РНК, играют регуляторную роль в онтогенезе круглых червей.
Гипотеза о значении РНК в синтезе белков была высказана Торбьерном Касперссоном (Torbjörn Caspersson) на основе исследований 1937-1939 гг., в результате которых было показано, что клетки, активно синтезирующие белок, содержат большое количество РНК. Подтверждение гипотезы было получено Юбером Шантренном (Hubert Chantrenne).