Для попадания в определённый отдел клетки белок должен обладать специфической меткой. В большинстве случаев такой меткой является часть аминокислотной последовательности самого белка (лидерный пептид, или сигнальная последовательность белка), но в некоторых случаях меткой служат посттрансляционно присоединённые к белку олигосахариды.
В процессе эволюции клетками было выработано четыре основных механизма для противодействия агрегации белков. Первые два — повторное сворачивание (переукладка) с шаперонов и расщепление протеазами — встречаются как у бактерий, так и у высших организмов. Аутофагия и накопление неправильно свёрнутых белков в особых немембранных органеллах характерны для эукариотов.
Важность нормальной работы шаперонов для функционирования организма может быть проиллюстрирована на примере шаперона α-кристаллина, входящего в состав хрусталика глаза человека. Мутации в этом белке приводят к помутнению хрусталика из-за агрегирования белков и, как результат, к катаракте.
По механизму катализа Международный союз по биохимии и молекулярной биологии выделяет несколько классов протеаз, среди них сериновые протеазы, аспарагиновые протеазы, цистеиновые протеазы и металлопротеазы.
При макроаутофагии участок цитоплазмы (часто содержащий какие-либо органоиды) окружается мембранным компартментом, похожим на цистерну эндоплазматического ретикулума. В результате этот участок отделяется от остальной цитоплазмы двумя мембранами. Такие двухмембранные органеллы называются аутофагосомами.
Сигнальную функцию выполняют белки-гормоны, цитокины, факторы роста и др.
Гормоны переносятся кровью. Большинство гормонов животных — это белки или пептиды.
Исследования чистых белков в контролируемых условиях полезны для определения их функций: кинетических особенностей каталитической активности ферментов, относительного сродства к различным субстратам и т. п. Исследования белков in vivo в клетках или в целых организмах предоставляют дополнительную информацию о том, где они функционируют и как регулируется их активность.
Объяснение:
(прости если не то)
Для попадания в определённый отдел клетки белок должен обладать специфической меткой. В большинстве случаев такой меткой является часть аминокислотной последовательности самого белка (лидерный пептид, или сигнальная последовательность белка), но в некоторых случаях меткой служат посттрансляционно присоединённые к белку олигосахариды.
В процессе эволюции клетками было выработано четыре основных механизма для противодействия агрегации белков. Первые два — повторное сворачивание (переукладка) с шаперонов и расщепление протеазами — встречаются как у бактерий, так и у высших организмов. Аутофагия и накопление неправильно свёрнутых белков в особых немембранных органеллах характерны для эукариотов.
Важность нормальной работы шаперонов для функционирования организма может быть проиллюстрирована на примере шаперона α-кристаллина, входящего в состав хрусталика глаза человека. Мутации в этом белке приводят к помутнению хрусталика из-за агрегирования белков и, как результат, к катаракте.
По механизму катализа Международный союз по биохимии и молекулярной биологии выделяет несколько классов протеаз, среди них сериновые протеазы, аспарагиновые протеазы, цистеиновые протеазы и металлопротеазы.
При макроаутофагии участок цитоплазмы (часто содержащий какие-либо органоиды) окружается мембранным компартментом, похожим на цистерну эндоплазматического ретикулума. В результате этот участок отделяется от остальной цитоплазмы двумя мембранами. Такие двухмембранные органеллы называются аутофагосомами.
Сигнальную функцию выполняют белки-гормоны, цитокины, факторы роста и др.
Гормоны переносятся кровью. Большинство гормонов животных — это белки или пептиды.
Исследования чистых белков в контролируемых условиях полезны для определения их функций: кинетических особенностей каталитической активности ферментов, относительного сродства к различным субстратам и т. п. Исследования белков in vivo в клетках или в целых организмах предоставляют дополнительную информацию о том, где они функционируют и как регулируется их активность.
Объяснение:
(прости если не то)
А4-3 (ДЕСТАБИЛИЗИРУЮЩИЙ ОТБОРотбор, вызванный, как правило, новыми не освоенными стрессорными факторами, под давление которых попадают системы нейроэндокринной регуляции онтогенеза. Особенно четко дестабилизирующий эффект наблюдается в условиях доместикации, т. е. при искусственном отборе, потому что виды, подвергаемые одомашниванию, сталкиваются с целым комплексом принципиально новых стрессирующих и отбирающих факторов, главным из которых является человек. Дестабилизирующий отбор, будучи формально движущим отбором, по существу ведет к резкому нарушению систем, регулирующих развитие организмов, к повышению их изменчивости, которая в естественных условиях становится исходным материалом для осуществления в дальнейшем движущей или стабилизирующей формы отбора. Дестабилизирующий отбор — важный фактор эволюции, значительно ускоряющий ее темпы и повышающий резистентность организмов. Понятие ввел и обосновал Д. К. Беляев (1970).)
А5-2 (Дизруптивный отбор разрывающий отбор, разновидность естественного отбора (См. Естественный отбор) в популяции животных или растений, приводящая к появлению двух или нескольких новых форм из одной исходной. Например, при отсутствии корма, необходимого для подрастающей молоди окуней, т. е. мальков др. рыб, могут сохраниться только «карлики» (особи с резко замедленным ростом, которые длительное время могут питаться планктонными ракообразными) и «гиганты» (особи уже к концу первого года жизни питаться мальками окуней своего же поколения). При такой ситуации в водоёме в течение ряда лет в результате Д. о. сформируются наследственно обусловленные расы «гигантов» и «карликов».)
А6-4 (ЭКОЛОГИЧЕСКАЯ ИЗОЛЯЦИЯ— вызванная экологическими причинами изоляция популяций одного и того же вида, в результате которой они не обмениваются генетической информацией.)