Биосинтез белков идет в каждой живой клетке. Наиболее активен он в молодых растущих клетках, где синтезируются белки на построение их органоидов, а также в секреторных клетках, где синтезируются белки-ферменты и белки-гормоны.
Основная роль в определении структуры белков принадлежит ДНК. Отрезок ДНК, содержащий информацию о структуре одного белка, называют геном. Молекула ДНК содержит несколько сотен генов. В молекуле ДНК записан код о последовательности аминокислот в белке в виде определенно сочетающихся нуклеотидов. Код ДНК удалось расшифровать почти полностью. Сущность его состоит в следующем. Каждой аминокислоте соответствует участок цепи ДНК из трех рядом стоящих нуклеотидов.
Например, участок Т—Т—Т соответствует аминокислоте лизину, отрезок А—Ц—А — цистину, Ц—А—А — валину н т. д. Разных аминокислот — 20, число возможных сочетаний из 4 нуклеотидов по 3 равно 64. Следовательно, триплетов с избытком хватает для кодирования всех аминокислот.
Синтез белка — сложный многоступенчатый процесс, представляющий цепь синтетических реакций, протекающих по принципу матричного синтеза.
Поскольку ДНК находится в ядре клетки, а синтез белка происходит в цитоплазме, существует посредник, передающий информацию с ДНК на рибосомы. Таким посредником является и-РНК. :
В биосинтезе белка определяют следующие этапы, идущие в разных частях клетки:
Первый этап — синтез и-РНК происходит в ядре, в процессе которого информация, содержащаяся в гене ДНК, переписывается на и-РНК. Этот процесс называется транскрипцией (от лат. «транскриптик» — переписывание).На втором этапе происходит соединение аминокислот с молекулами т-РНК, которые последовательно состоят из трех нуклеотидов — антикодонов, с которых определяется свой триплет-кодон.Третий этап — это процесс непосредственного синтеза полипептидных связей, называемый трансляцией. Он происходит в рибосомах.На четвертом этапе происходит образование вторич ной и третичной структуры белка, то есть формирование окончательной структуры белка.Таким образом, в процессе биосинтеза белка образуются новые молекулы белка в соответствии с точной информацией, заложенной в ДНК. Этот процесс обеспечивает обновление белков, процессы обмена веществ, рост и развитие клеток, то есть все процессы жизнедеятельности клетки.
Хромосомы (от греч. «хрома» — цвет, «сома» — тело) — очень важные структуры ядра клетки. Играют главную роль в процессе клеточного деления, обеспечивая передачу наследственной информации от одного поколения к другому. Они представляют собой тонкие нити ДНК, связанные с белками. Нити называются хроматидами, состоящими из ДНК, основных белков (гистонов) и кислых белков.
В неделящейся клетке хромосомы заполняют весь объем ядра и не видны под микроскопом. Перед началом деления происходит спирализация ДНК и каждая хромосома становится различимой под микроскопом. Во время спирализации хромосомы сокращаются в десятки тысяч раз. В таком состоянии хромосомы выглядят как две лежащие рядом одинаковые нити (хроматиды), соединенные общим участком — центромерой.
Для каждого организма характерно постоянное количество и структура хромосом. В соматических клетках хромосомы всегда парные, то есть в ядре есть две одинаковые хромосомы, составляющие одну пару. Такие хромосомы называют гомологичными, а парные наборы хромосом в соматических клетках называют диплоидными.
Так, диплоидный набор хромосом у человека состоит из 46 хромосом, образуя 23 пары. Каждая пара состоит из двух одинаковых (гомологичных) хромосом.
Особенности строения хромосом позволяют выделить их 7 групп, которые обозначаются латинскими буквами А, В, С, D, Е, F, G. Все пары хромосом имеют порядковые номера.
У мужчин и женщин есть 22 пары одинаковых хромосом. Их называют аутосомы. Мужчина и женщина отличаются одной парой хромосом, которые называют половыми. Они обозначаются буквами — большая X (группа С) и маленькая Y (группа С,). В женском организме 22 пары аутосом и одна пара (XX) половых хромосом. У мужчин — 22 пары аутосом н одна пара (XY) половых хромосом.
В отличие от соматических клеток, половые клетки содержат половинный набор хромосом, то есть содержат по одной хромосоме каждой пары! Такой набор называют гаплоидным. Гаплоидный набор хромосом возникает в процессе созревания клеток.
Строение и функционирование клеток изучает цитология (от греч. цитос — клетка, логос — наука) — наука о клетке. У бактерий низших грибов и некоторых водорослей клетка составляет целостный организм самостоятельно существовать в окружающей среде. У многоклеточных эукариот клетки существуют совместно, формируя ткани и органы организма. Клетка обладает всеми свойствами живой системы: такие свойства живого, как размножайся, видоизменяться и реагировать на раздражения, в более мелких единицах материи не проявляются. Клетка является элементарной, т.е. наименьшей, самостоятельной единицей строения, функционирования и развития живых организмов. Разрушенная клетка уже не существовать неопределенно долго, поэтому можно сделать вывод, что клетка — самая элементарная биологическая система самостоятельно поддерживать жизнь. Знание основ химической и структурной организации, принципов функционирования и механизмов развития клеток исключительно важно для понимания сходных черт, присущих сложно устроенным организмам растений, животных и человека
Основные положения клеточной теории
Ставшие привычными представления о клетке как об основной единице жизни известны под названием “клеточная теория”. История цитологии тесно связана с изобретением, использованием и усовершенствованием микроскопа. В 1665 году английский физик Р. Гук при сконструированного им микроскопа впервые обнаружил остатки мертвых клеток в тонком срезе пробки. На срезе структуры, похожие на пчелиные соты, построенные из ячеек, разделенных перегородками (целлюль), или клеток. Вскоре открытие Р. Гука подтвердили ботаники М. Мальпигин и Н. Грю. В 1680 году голландский оптик А. Ливенгук впервые увидел животную клетку (эритроцит), обнаружил одноклеточные организмы. К началу XIX в., по мере совершенствования микроскопов и методов фиксации и окраски клеток, представления о клеточном строении организмов получили всеобщее признание. Были обнаружены протоплазма клеток (Я. Пуркинье, 1830 г.) и ядро (Р. Броун, 1833 г).
В 1838—1839 годы немецкие ученые ботаник М. Шлейден и зоолог Т. Шванн обобщили накопившиеся к этому времени знания о клетке. Они сформулировали клеточную теорию, согласно которой клетки представляют собой структурную и функциональную основу всех живых существ.
Клеточная теория получила дальнейшее развитие в трудах немецкого ученого Р. Вирхова. В своей книге “Клеточная патология” (1858 г.) впервые показал, что развитие заболеваний организма связано с нарушением жизнедеятельности клеток. Р. Вирхов внес существенное дополнение в клеточную теорию — клетка может возникнуть только из предшествующей клетки в результате ее деления. Русский ученый К. Бер показал, что развитие всех многоклеточных организмов начинается с яйцеклетки. Таким образом, клетка является также единицей развития организмов.
Дальнейшее развитие цитологии связано с совершенствованием методов исследования. Комплексное использование световой и электронной микроскопии, биохимических и биофизических методов анализа позволило установить детальное строение и химический состав всех компонентов клетки, показать неразрывную связь между структурой клетки и ее функцией в организме. Цитология бурно развивается в наши дни, благодаря чему сформировались современные представления о клеточном уровне организации в иерархии живой природы. Современная клеточная теория включает следующие положения;
• клетка — это элементарная живая система к самообновлению, саморегуляции и самовоспроизведению;
• все живые организмы построены из клеток (исключение составляют вирусы); клетки одноклеточных и многоклеточных животных и растительных организмов сходны (гомологичны) по строению, химическому составу, принципам обмена веществ и основным проявлениям жизнедеятельности;
• клетка обладает всей совокупностью черт, характеризующих живые системы: она осуществляет обмен веществ и энергией, размножается, растет и передает по наследству генетическую информацию, реагирует на внешние сигналы двигаться. Функции в клетке распределены между различными органеллами. Клетка — элементарная структурная, функциональная и генетическая единица живого;
• все живые организмы развиваются из одной или группы клеток; каждая новая клетка образуется в результате деления исходной (материнской) клетки. Клетка — элементарная единица развития живого;
• в сложных многоклеточных организмах клетки дифференцируются, специализируясь на выполнении определенных функций; клетки объединены в ткани и органы, функционально и связанные в системы организма и находятся под контролем межклеточных, гуморальных и нервных форм регуляции.
Комплексное использование электронного микроскопирования и микрохимических методов анализа позволило изучить строение и химический состав структурных компонентов клетки, показать неразрывную связь между структурой клетки и ее функцией.ответ:
Объяснение:
Увядает цветок главным образом потому, что в срезанном растении, цветке в связи с усиленным испарением не хватает влаги. Начинается это с момента срезки и особенно когда цветок и листья долго находятся без воды, имеют большую поверхность испарения (срезанная сирень, срезанная гортензия). Многим срезанным оранжерейным цветам трудно переносить разницу температур и влажности того места, где они выращивались, с сухостью и теплом жилых комнат.
Но цветок может отцветать, или стареть, процесс этот естественный и необратимый.
Чтобы избежать увядания и продлить срок жизни цветов, букет цветов должен быть в особой упаковке, служащей для предохранения от сминания, проникновения солнечных лучей, тепла рук. На улице букет желательно нести цветками вниз (влага всегда на время переноса цветов будет поступать непосредственно к бутонам).
Одна из основных причин увядания цветов в вазе — уменьшение содержания сахаров в тканях и обезвоживание растения. Происходит это чаще всего из-за закупорки сосудов пузырьками воздуха. Чтобы избежать этого, конец стебля опускают в воду и делают косой срез острым ножом или секатором. После этого цветок уже не вынимают из воды. Если же такая потребность возникает, то операцию повторяют снова.
Перед тем как поставить срезанные цветы в воду, удаляют со стеблей все нижние листья, а у роз — еще и шипы. Это уменьшит испарение влаги и предотвратит бурное развитие бактерий в воде.