Пластический обмен (анаболизм, ассимиляция) - совокупность реакций синтеза, которые идут с затратой энергии АТФ. В процессе пластического обмена синтезируются органические вещества, необходимые клетке. Примером реакций пластического обмена являются фотосинтез, биосинтез белка и репликация (самоудвоение) ДНК. Аминокислоты → Белки Глюкоза → Полисахариды Глицерин + жирные кислоты → Жиры Нуклеотиды → Нуклеиновые кислоты
Фотосинтез - это процесс преобразования энергии света в энергию химических связей органических соединений с хлорофилла.
Световая фаза фотосинтеза: Скорость световых реакций возрастает пропорционально нарастанию силы света и не зависит от температуры. Световые реакции протекают на мембранах тилакоидов (в хлоропластах). Кислород является побочным продуктом фотосинтеза, а вода - его источником. Протоны водорода вытекают из тилакоида через канал в мембранном белке - АТФ-синтетазе, при этом из АДФ синтезируется АТФ. Данный процесс носит название фотофосфорилирования, не требует участия кислорода и дает в 30 раз больше АТФ, чем митохондрии в процессе окисления. Суммарное уравнение реакции световой фазы фотосинтеза можно записать следующим образом: 2H₂O + 2НАДФ + 3АДФ + 3H₃PO₄ → 2НАДФН + H⁺ + 3АТФ + O₂↑
Темновая фаза фотосинтеза: Скорость темновых реакций, напротив, возрастает с повышением температуры, однако по достижении в 30°С этот рост прекращается, что свидетельствует о ферментативном характере этих превращений, происходящих в строме. в ходе темновых реакций фотосинтеза происходит связывание молекул CO₂, на которое расходуются молекулы АТФ и НАДФН + H⁺, синтезированные в световых реакциях: 6CO₂ + 12H₂O → C₆H₁₂O₆ + 6O₂↑ + 6H₂O или 6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂↑
Реакции световой и темновой фаз фотосинтеза взаимосвязаны, так как увеличение скорости одной группы реакций влияет на интенсивность всего процесса фотосинтеза только до определенного момента, пока вторая группа реакций не выступает в роли лимитирующего фактора, и возникает потребность в ускорении реакций второй группы для того, чтобы первые происходили без ограничений.
Одним из важнейших свойств цитоплазмы живой клетки является ее способность к движению. движение цитоплазмы играет важную роль в осуществлении обмена и распределении веществ внутри клетки, а также характеризует уровень жизнедеятельности клеточных структур. о движении цитоплазмы можно судить по перемещению органелл в крупных клетках с большими вакуолями. в осуществлении движения цитоплазмы принимают участие элементы цитоскелета - микрофиламенты. источником этого движения служит атф. движение цитоплазмы - один из наиболее чувствительных показателей жизнеспособности клетки. многие, даже незначительные воздействия, останавливают или, наоборот, ускоряют его. различают движение цитоплазмы: спонтанное, постоянное и индуцированное внешними факторами(изменением освещенности, температуры, веществами, механическими воздействиями и т. основными типами движения цитоплазмы являются круговое (вращательное или ротационное), струйчатое иколебательное.
ВыделениеЗначение выделения продуктов жизнедеятельности организма, В процессе обмена веществ в клетках образуются конечные продукты. Среди них могут быть и ядовитые для клеток вещества. Так, при расщеплении аминокислот, нуклеиновых кислот и других азотсодержащих соединений образуются токсические вещества —аммиак, мочевина и мочевая кислота, которые по мере их накопления подлежат выведению из организма. Должны удаляться» кроме того, избыток воды, углекислый газ, яды, которые поступают вместе с вдыхаемым воздухом, поглощаемой пищей и водой, избыток витаминов, гормонов,лекарственные препараты и т. п. При накоплении этих веществ в организме возникает опасность нарушения постоянства состава и объема внутренней среды организма, что может отразиться на здоровье человека.Органы выделения и их функции. Выделительную функцию выполняют многие органы. Так, легкие выводят из организма углекислый газ, пары воды, некоторые летучие вещества, например пары эфира, хлороформа при наркозе, пары алкоголя при опьянении. Потовыми железами удаляются вода и соли, небольшие количества мочевины, мочевой кислоты, а при напряженной мышечной работе — молочная кислота. Слюнные и желудочные железы выделяют некоторые тяжелые металлы, ряд лекарственных веществ, чужеродные органические соединения. Важную экскреторную функцию выполняет печень, удаляя из крови гормоны (тироксин, фолликулин), продукты расщепления гемоглобина, азотистого метаболизма и многие другие вещества.Поджелудочная железа и кишечные железы выводят соли тяжелых металлов, лекарственные вещества.Однако основная роль в процессах выделения принадлежит специализированным органам — почкам. К важнейшим функциям почек относится участие в регуляции: 1) объема крови и других жидкостей внутренней среды, 2) постоянства осмотического давления крови и других жидкостей тела, 3) ионного состава жидкостей внутренней среды и ионного баланса организма, 4) кислотно-щелочного равновесия, 5) выведения из организма конечных продуктов азотистого обмена и чужеродных веществ. Таким образом, почки являются органом, обеспечивающим гомеостаз внутренней среды организма.
Примером реакций пластического обмена являются фотосинтез, биосинтез белка и репликация (самоудвоение) ДНК.
Аминокислоты → Белки
Глюкоза → Полисахариды
Глицерин + жирные кислоты → Жиры
Нуклеотиды → Нуклеиновые кислоты
Фотосинтез - это процесс преобразования энергии света в энергию химических связей органических соединений с хлорофилла.
Световая фаза фотосинтеза:
Скорость световых реакций возрастает пропорционально нарастанию силы света и не зависит от температуры. Световые реакции протекают на мембранах тилакоидов (в хлоропластах).
Кислород является побочным продуктом фотосинтеза, а вода - его источником.
Протоны водорода вытекают из тилакоида через канал в мембранном белке - АТФ-синтетазе, при этом из АДФ синтезируется АТФ.
Данный процесс носит название фотофосфорилирования, не требует участия кислорода и дает в 30 раз больше АТФ, чем митохондрии в процессе окисления.
Суммарное уравнение реакции световой фазы фотосинтеза можно записать следующим образом:
2H₂O + 2НАДФ + 3АДФ + 3H₃PO₄ → 2НАДФН + H⁺ + 3АТФ + O₂↑
Темновая фаза фотосинтеза:
Скорость темновых реакций, напротив, возрастает с повышением температуры, однако по достижении в 30°С этот рост прекращается, что свидетельствует о ферментативном характере этих превращений, происходящих в строме.
в ходе темновых реакций фотосинтеза происходит связывание молекул CO₂, на которое расходуются молекулы АТФ и НАДФН + H⁺, синтезированные в световых реакциях:
6CO₂ + 12H₂O → C₆H₁₂O₆ + 6O₂↑ + 6H₂O
или
6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂↑
Реакции световой и темновой фаз фотосинтеза взаимосвязаны, так как увеличение скорости одной группы реакций влияет на интенсивность всего процесса фотосинтеза только до определенного момента, пока вторая группа реакций не выступает в роли лимитирующего фактора, и возникает потребность в ускорении реакций второй группы для того, чтобы первые происходили без ограничений.