Из условия следует:
x^2-5>=0
x^2>=5
x>=\sqrt{5} или x<=-\sqrt{5}
ответ: нет верных решений
Решение. Смежные углы составляют в сумме 180°, поэтому если два внешних угла треугольника при разных вершинах равны, то равны и углы треугольника при этих вершинах, а значит, данный треугольник — равнобедренный.
Сторона, равная 16 см, может быть либо основанием, либо боковой стороной этого треугольника. Но боковой стороной она быть не может: иначе стороны треугольника были бы равны
16 см, 16 см и 74 см — 16 см — 16 см = 42 см, а 16 см + 16 см = 32 см < 42 см,
в то время как каждая сторона треугольника меньше суммы двух других сторон. Следовательно, эта сторона является основанием, а значит, каждая из боковых сторон равна
(74-16)/2= 29 см.
Ответ. 29 см и 29 см.
Решение. Смежные углы составляют в сумме 180°, поэтому если два внешних угла треугольника при разных вершинах равны, то равны и углы треугольника при этих вершинах, а значит, данный треугольник — равнобедренный.
Сторона, равная 16 см, может быть либо основанием, либо боковой стороной этого треугольника. Но боковой стороной она быть не может: иначе стороны треугольника были бы равны
16 см, 16 см и 74 см — 16 см — 16 см = 42 см, а 16 см + 16 см = 32 см < 42 см,
в то время как каждая сторона треугольника меньше суммы двух других сторон. Следовательно, эта сторона является основанием, а значит, каждая из боковых сторон равна
(74-16)/2= 29 см.
Ответ. 29 см и 29 см.
{x²-5≥0, x≠0;
x²-5≥0,
(x-√5)(x+√5)≥0,
(x-√5)(x+√5)=0,
[x-√5=0, x+√5=0;
[x=√5, x=-√5;
x∈(-∞;-√5]U[√5;+∞)
{Либо в условии опечатка(x²-25), либо в ответах}